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Abstract— Given a grayscale photograph, the colorization sys-
tem estimates a visually plausible colorful image. Conventional
methods often use semantics to colorize grayscale images. How-
ever, in these methods, only classification semantic information
is embedded, resulting in semantic confusion and color bleeding
in the final colorized image. To address these issues, we pro-
pose a fully automatic Saliency Map-guided Colorization with
Generative Adversarial Network (SCGAN) framework. It jointly
predicts the colorization and saliency map to minimize semantic
confusion and color bleeding in the colorized image. Since the
global features from pre-trained VGG-16-Gray network are
embedded to the colorization encoder, the proposed SCGAN can
be trained with much less data than state-of-the-art methods to
achieve perceptually reasonable colorization. In addition, we pro-
pose a novel saliency map-based guidance method. Branches of
the colorization decoder are used to predict the saliency map
as a proxy target. Moreover, two hierarchical discriminators
are utilized for the generated colorization and saliency map,
respectively, in order to strengthen visual perception perfor-
mance. The proposed system is evaluated on ImageNet validation
set. Experimental results show that SCGAN can generate more
reasonable colorized images than state-of-the-art techniques.

Index Terms— Colorization, generative adversarial network,
saliency map.

I. INTRODUCTION

IMAGE colorization is the process of assigning plausible
and perceptual colors to each pixel in the input image.

It has found a wide array of applications in computer vision,
such as multispectral image colorization [1], [2], image com-
pression [3], cartoon colorization [4], [5], restoration of old
photographs and films [6], fake colorization detection [7] and
even assisting other tasks like classification and segmenta-
tion [8]. However, without prior information on the colors of

Manuscript received April 16, 2020; revised August 11, 2020,
October 3, 2020, and November 5, 2020; accepted November 8, 2020. Date of
publication November 16, 2020; date of current version August 4, 2021. This
work was supported by an Internal Funds Scheme from the City University
of Hong Kong under Project 9678141. This article was recommended by
Associate Editor H. Xiong. (Corresponding author: Yuzhi Zhao.)

Yuzhi Zhao, Lai-Man Po, and Wing-Yin Yu are with the Department
of Electronic Engineering, City University of Hong Kong, Hong Kong
(e-mail: yzzhao2-c@my.cityu.edu.hk; eelmpo@cityu.edu.hk; wingyinyu8-c@
my.cityu.edu.hk).

Kwok-Wai Cheung is with the School of Communication, The Hang Seng
University of Hong Kong, Hong Kong (e-mail: keithcheung@hsmc.edu.hk).

Yasar Abbas Ur Rehman is with TCL Corporate Research Hong Kong,
Hong Kong (e-mail: yasar.abbas@my.cityu.edu.hk).

This article has supplementary material provided by the
authors and color versions of one or more figures available at
https://doi.org/10.1109/TCSVT.2020.3037688.

Digital Object Identifier 10.1109/TCSVT.2020.3037688

the objects in the input intensity image, the colorization results
may vary largely from system to system. Notably, the semantic
confusion (which color should be assigned to each object in
the image), color bleeding (spreading of colors beyond the
object boundary), edge distortion, and object intervention are
some key problems in the current automatic image colorization
tasks.

There are multiple possible colors for an object in the
image. Assigning a proper color to the object in an image is
still an open research problem in multiple domains. In recent
decades, a multitude of algorithms have been proposed to
solve this problem. These algorithms can be divided into
three possible categories: (1) Scribble-based methods [9]–[17],
(2) example-based methods [18]–[30], and (3) fully-automatic
methods [31]–[45]. The first two categories of algorithms
require human interactions for assigning reasonable colors to
various objects in the input-intensity image. As a result, these
algorithms are highly correlated with the rationality of the
human hints, which makes them labor-intensive and less robust
to errors. For example, the scribble-based methods utilize the
color hints, provided by the user, to assign different colors to
the objects in the image. Similarly, the example-based methods
require an additional color image to infer the chrominance
intensity of different objects in the input image.

On the other hand, fully automatic approaches utilize end-
to-end learning to directly learn the relationship between
an input grayscale image and the corresponding color
embeddings, without any human intervention. Most of these
approaches utilize the deep Convolutional Neural Networks
(CNN). Normally they are trained on large-scale datasets
such as ImageNet [46] (1.3M images) and Places [47]
(1.8M images) to encode the semantic information for
image colorization. For instance, Larsson et al. [33] utilized
hyper-column from a VGG-Net [48] pre-trained on ImageNet
for semantic feature extraction. However, it requires high com-
putational footprints which makes the inference slower during
test time. Iizuka et al. [38] on the other hand jointly trained
a classification sub-network and auto-encoder stream. It not
only obtains semantic features but also establishes a reasonable
scene context for colorization. Based on a VGG-Net backbone,
Zhang et al. [37] introduced cross-channel encoding and class
rebalancing techniques to generate unimodal distribution of
color embeddings.

The automatic image colorization systems achieve bet-
ter results. However, the problems of color bleeding and
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Fig. 1. Illustration of coloirzation results by [37], [44] and proposed method on old black and white photographs. The rows from top to bottom
represent grayscale input, colorization results of [37], [44] and proposed method and saliency map generated by proposed method, respectively. The red
rectangles highlight specific regions suffer from color bleeding or semantic confusion. Our model learns the different colorization representations in multiple
scenes: speech, countryside, landscapes, city street, and human portraits. Photos were taken from the US National Archives (public domain). Please visit
https://github.com/zhaoyuzhi/Semantic-Colorization-GAN (supplementary material) to see more colorization results.

unreasonable assignment of colors still exist. Figure 1 shows
some common examples of the failure cases of [37] and [44]
on some legacy photos. For instance, there is color bleeding
in the first column by methods [37], [44] since color of
trees spreads to crowd. Also, the roads and human faces
are colorized in blue (in column 4 and 5, respectively) by
methods [37], [44]. It leads to semantic confusion effect in
output images. To address the problems, some regularization
terms such as image gradients [31] and segmentations [34]
have been added to the optimization process. However, these
constrains are not useful for some situations. Since image gra-
dients cannot represent semantics, it is hard for the colorization
system to judge the colors for objects with similar boundaries,
e.g. trees and crowd. In addition, only a few datasets include
segmentation labels with limited categories.

Considering these limitations, we propose to use saliency
map to improve the image colorization quality for follow-
ing three aspects. Firstly, it identifies perceptually significant
regions in the image. The colorization system can then be
guided to focus more on the key objects while less influenced
by the backgrounds. The key objects are richer in color while
the backgrounds often contain green and blue colors, e.g. trees

and sky. Moreover, it reduces the bias of the system to the
colors that make up the majority of images. Secondly, it assists
the network to localize objects at pixel level. It represents
semantically salient areas with relatively clear boundaries.
Thus, it is beneficial for colorization network to alleviate color
bleeding artifact. Finally, since saliency map is adaptive to
different objects in an image, it is convenient to be applied to
multiple datasets in colorization area.

Specifically, we perform colorization and predict saliency
map simultaneously by utilizing a Saliency Map-guided Col-
orization with Generative Adversarial Network (SCGAN)
architecture. The proposed SCGAN has the following advan-
tages. Firstly, it adopts dual encoders, one of which is a
well-trained VGG-Net [48] for extracting semantic informa-
tion. Since semantic information is implied in this VGG-based
encoder, the proposed system can distinguish plausible colors
for objects with similar edges. Secondly, the decoder of
proposed system has two branches for producing colorization
and saliency map, respectively. To augment visual salient area,
we compute multiplication of the two outputs to obtain a
weighted image representing salient areas, as shown in last row
of Figure 1. Then, we leverage an attention loss to emphasize
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the salient areas at training. Finally, it includes two discrimi-
nators for entire image and weighted image, respectively. The
adversarial training strategy [49] enhances sharpness and color
vividness of images. Moreover, the saliency map branch better
assists the mainstream to generate plausible colorization.

In addition, conventional fully automatic colorization
approaches often require large training datasets such as Ima-
geNet [46] and Places [47]. The proposed SCGAN can be
trained on a relatively small dataset (e.g. subset of ImageNet,
0.13M images). It utilizes a saliency map-based guidance
method to produce visually plausible colorization in the salient
regions in the image. We notice that acquisition of large dataset
in some low-level vision applications is much harder compared
to natural image colorization. For example, the multispectral
image colorization [1], [2], [50] requires complex imaging sys-
tem and precise alignment technique. The proposed saliency
map-based guidance method is beneficial to such applications.

Compared with the existing methods, the main contributions
of this paper are as follows:

1) We employ the saliency map as an additional proxy task
in the proposed SCGAN that improves the performance;

2) We propose a saliency map-based guidance method that
helps our system effectively predict a fine colorization with a
relatively small training dataset;

3) We firstly use an effective evaluation criterion CCI (Color
Colorfulness Index) to evaluate colorization quality and show
its high correlation with human observers;

4) We apply SCGAN architecture with saliency map-based
guidance method to multispectral image colorization and
obtain state-of-the-art results.

II. RELATED WORK

A. Scribble-Based Colorization

Scribble-based colorization method is the most straight-
forward way to achieve colorization of grayscale image,
but it is extremely labour-intensive. It is based on prior
color scribbles and then propagates them to the rest of
the image. Levin et al. [9] proposed an optimization-based
system and assumed that the adjacent pixels with same
illuminance could have similar colors. This technique was
enhanced using an additional adaptive edge detection algo-
rithm by Huang et al. [10]. Yatziv and Sapiro [11] pro-
posed a fast colorization algorithm based on the concepts
of luminance-weighted chrominance blending. To enhance
long-range color propagation, Xu et al. [13] performed an
affinity-based edit scheme and Chen et al. [15] utilized the
locally linear embedding to model the linear combination for
adjacent pixels in a feature space. However, the main weakness
is that they only concentrate on one aspect of propagating
local or global color hints. The results are highly related to
the number and location of given color scribbles. To address
the ambiguity brought by sparse scribbles. Xu et al. [12]
proposed a novel approximation scheme requiring much less
time and memory and Paul et al. [51] proposed a 3D steerable
pyramids approach for occlusion handling. Since the afore-
mentioned methods require accurate scribbles for colorization,
Zhang et al. introduced an additional deep prior from a CNN

to ensure plausible colorization when no given scribbles.
Those methods are still easy to overfit to scribbles. Moreover,
scribbles with similar pixel locations often lead to color
bleeding in colorized images.

B. Example-Based Colorization

In contrast, the example-based colorization approaches
exploit color information from a reference image to guide
colorization. It reduces the difficulty of choosing many color
scribbles. They mainly match spatial features between refer-
ence image and input grayscale image by statistical analy-
sis [20], [26]. This idea was enhanced by characterizing
the image patches using GMM [27], discriminating different
regions by segmentation maps [25], predicting probability for
each pixel by global optimization [22], and modelling color
selection by energy-minimization method [18]. Moreover,
superpixels [19], [21], [24] were utilized to model the corre-
spondences between grayscale input and reference. To alleviate
effort of selecting proper reference images, Chia et al. [29]
developed an image retrieval method to download appropriate
reference images from Internet. However, those methods are
highly based on references which are remarkably close to
grayscale input. The colors of output images often appear
unnatural when given images not similar to input. In order
to generalize to more reference images, He et al. [23]
and Zhang et al. [52] applied deep image analogy technique
and neural network to match the semantics of the target
image and reference accurately. In addition, researchers used
more types of references as guidance for colorization such
as words [53], [54] and complete sentence [55]. However,
the combination of examples and input grayscale image is
difficult in terms of transferring examples to useful color
information.

C. Fully Automatic Colorization

Recently, fully automatic colorization methods have out-
performed traditional methods due to their robustness and
generalization. They are based on CNN to learn mapping
from grayscale to color embeddings as a self-supervised task
chiefly. Cheng et al. [40] first adopted a deep neural network
to colorize the images based on the extracted features from
different patches. However, their training dataset is too small
and network structure is simple. Without using handcrafted
features, Larsson et al. [33] proposed an end-to-end CNN
architecture. The hyper-column of a pre-trained VGG-Net is
utilized to augment original grayscale input; whereas its mem-
ory consumption is too high. Iizuka et al. [38] developed a
two-stream architecture to jointly predict the color embedding
and category of the scene. The semantics from classification
sub-network are merged into mainstream by a fusion layer.
Zhang et al. [37] adopted a VGG-styled network with added
depth and dilated convolutions. They introduced cross-channel
encoding and class rebalancing techniques to resolve the
inherent ambiguity and multimodal nature of the colorization
problems. However, those methods retain common artifacts in
colorization area such as color bleeding and semantic confu-
sion. To address these problems, Zhao et al. [34], [35] added
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segmentation information and Lei and Chen [43] proposed a
bilateral loss for self-regularization.

Moreover, some generative models have been leveraged
for multimodal colorization. Isola et al. [36] proposed a gen-
eral image-to-image translation framework based on con-
ditional GAN [49]. The experimental results demonstrated
that the vividness of colorized images was enhanced due to
adversarial training. Deshpande et al. [31] utilized a mixture
density network (MDN) to map the grayscale images to
GMM. There are numerous possible vectors sampled from
GMM and each corresponds to a colorization type. It was
enhanced by Messaoud et al. [56] by introducing structural
consistency. Based on capturing dependencies of neighbour-
ing pixels to ensure color consistency, Royer et al. [32] and
Guadarrama et al. [42] developed a PixelCNN network to
produce multiple plausible and vivid colorizations for a given
grayscale image.

D. Salient Object Detection

The early works of salient object detection (or saliency
detection) were based on hand-crafted features such as color
variation [57], boundaries [58], and center prior [59]. They
preserve the edges of images well but ignore the inte-
gral structural features. To predict robust saliency maps,
Li and Yu [60] proposed a multiscale feature extraction
for superpixel saliency detection. Liu et al. [61] combined
image-level and superpixel-level features into saliency detec-
tion. However, hand-crafted features are hard to generalize to
different scenes. Thus, the CNN is adopted to improve gener-
alization ability of saliency detection algorithms. Researchers
developed diverse architectures such as recurrent network [62],
encoder-decoder [63]–[66], feature pyramid network [67]–[71]
to fuse low-level edge details and high-level semantics. Some
methods [64], [65], [69] used attention mechanism, which
further improved the accuracy due to use of dense connections
for each pixel. Recently, some extensions focus on improve-
ment of network architecture to effectively use features. For
instance, Liu et al. [66] designed a pooling-based pyramid
architecture to accurately locate salient areas. Pang et al. [72]
effectively used multi-level and multi-scale information and
proposed a feature aggregation module. Zhao and Wu [70]
proposed a pyramid attention network that integrates different
levels of information from VGG-Net. In conclusion, edge
guidance, attention mechanism and semantics greatly improve
the performance of saliency detection. In this paper, we choose
the approach [70] to generate robust and accurate saliency
maps.

E. Generative Adversarial Network

The GAN was proposed by Goodfellow et al. [49] to gen-
erate data in an unsupervised manner. It contains a generator
that learns to produce realistic data and a discriminator
that judges whether the input is generated by generator
or sampled from ground truth. The system is trained to
minimize the JS-divergence between generated samples and
target dataset. To stabilize its convergence, some advanced
divergences for estimating feature disparity were proposed,

such as f-divergence [73], Pearson χ2 divergence [74], and
Earth-Mover distance [75], which was further improved by
adding a gradient punishment [76]. Compared to traditional
pixel-level loss, the adversarial loss minimizes the various
divergences between the generated images and the real images
in the target domain, leading to a substantial boost of the
results. The proposed SCGAN framework aims at producing
perceptually high-quality colorizations.

F. Comparative Analysis of Colorization Methods

Early colorization methods often require human hints such
as scribbles and reference images as guidance. They [10], [16],
[24], [25], [30] mainly utilized hand-crafted features including
low-level SIFT or edges and high-level scene or location
categories. The limitation of these works is not general to
images in different scenes. Recently, deep neural networks
have been utilized to address this problem. They mainly
adopted pre-trained networks to enhance colorization quality
but individual optimization skills. Thus, their colorization
effects are different, e.g. classifying color for pixels [37]
promotes very colorful results; training with scene classifi-
cation [38], [44] ensures overall color correctness; contextual
loss [52], [77] facilitates color similarity with ground truth.
Moreover, to alleviate color bleeding and semantic confusion,
additional constrains such as gradient loss [31], segmentation
loss [34], [35], and bilateral loss [43] were proposed. They
worked well in some circumstances; whereas saliency map is
more general to all images compared with them. In this paper,
we propose to extract semantics and use a novel joint training
with saliency detection.

III. METHODOLOGY

A. SCGAN Architecture

An overview of the SCGAN framework is shown in Figure 2
and Figure 3. Our method is based on a hierarchical GAN
architecture that produces colorizations and saliency maps
from grayscale images jointly. It consists of four parts: global
feature encoder, main colorization network, saliency predic-
tion network, and patch-based discriminators. The first three
components constitute generator. The global feature encoder
adopts VGG-16-Gray [48] architecture, all max-pooling layers
of which are replaced by convolutional layers with stride
of 2. While the main colorization network is based on U-Net
structure [78] with skip connection between each encoder
layer i and decoder layer n − i with same resolution, where n
is the total number of layers, as green lines shown in Figure 2.
It effectively prevents gradient vanishment and accelerates
convergence. In order to fuse global information and local
low-level information, the resultant layer of global feature
encoder is concatenated with the middle layer of main col-
orization network. Moreover, three layers of the decoder are
used to predict the saliency map with same spatial resolution
as colorization.

Two discriminators share the same PatchGAN [36] architec-
ture, as shown in Figure 3, which effectively models the image
as Markov random field and strengthens high-frequency cor-
rectness in local image patches. The first discriminator judges
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Fig. 2. Architecture of the proposed SCGAN generator. It receives a grayscale image as input and predicts a colorized image with a corresponding saliency
map. The scalar denotes number of channels for relevant block. Different colors represent the distinct parts of generator architecture.

Fig. 3. Architecture of the proposed SCGAN discriminators. The inputs
of the two discriminators (color image discriminator and attention-based
discriminator) are pairs of colorized images and the images with attention
region, respectively.

the colorized image and ground truth color image. In addition,
we perform element-wise product on colorized image with
generated saliency map to obtain a weighted image. Simi-
larly, we can obtain a ground truth weighted image by same
computation scheme. Then, we feed the pair to the second
attention-based discriminator, which judges whether the input
is real weighted image or not. Based on the work in [36],
we choose 70 × 70 PatchGAN architecture including reason-
able parameters for better visual quality.

B. Attention Mechanism and Training Schedule

Saliency maps are commonly used to explicitly represent the
visual attention areas. Based on this observation, we assume
these salient areas have more colorful patterns or higher

variance, which are essential for enhancing rare colors when
developing a colorization algorithm. To emphasize the areas,
we propose to perform element-wise product between the col-
orful image and its saliency map. The output weighted image
includes regions rich in color while filtering out flatten regions,
as shown in Figure 3. By enforcing an additional attention loss,
as represented in Equation (2), on weighted image, the saliency
prediction network assists the main colorization network in
revising its bottom layers. Therefore, this attention mechanism
serves as a kind of guidance for colorization.

Since GAN architecture is highly nonlinear, random ini-
tialization tends to converge to local minima. To facilitate
and stabilize its convergence, we defined a two-phase training
procedure. Firstly, SCGAN generator is only trained with
L1 loss, which can remove outliers so that the generator
achieves better generalization than L2 loss. Therefore, a stable
adversarial training process can be maintained by striding
a balance between generator and discriminators. At second
stage, we construct the whole SCGAN by alternately train-
ing the generator and discriminators. Note that, the saliency
map-based guidance method exists in both stages.

C. Objectives

At first stage, the L1 losses for colorized image and
weighted image are jointly considered. Thus, they emphasize
both pixel fidelity and perceptually significant regions of the
generated images. The losses are defined as:

L1 = E[||Gc(x) −c||1], (1)

L A = E[||Gc(x) � Gs(x) −c � s||1], (2)

where x , c and s represent input grayscale image, ground
truth colorful image and saliency map, respectively. The Gc(x)
and Gs(x) are the colorized image and corresponding saliency
map. The operator � means element-wise product.
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At second stage, we add two additional discriminators
Dc(∗) and DA(∗), respectively. The WGAN-GP loss [75]
items are defined as:

LG = −E[Dc(Gc(x))] − E[DA(Gc(x) � Gs(x))], (3)

L D = E[Dc(Gc(x))] + E[DA(Gc(x) � Gs(x))]
− E[Dc(c)] − E[DA(c � s)]
+ λE[(||�c̈ Dc(c̈)||2 − 1)2]
+ λE[(||�s̈ Ds(s̈)||2 − 1)2] (4)

where Equation (3) and the first four terms of Equation (4)
constitute original WGAN loss, the remaining of Equation (4)
is a gradient penalty. According to [76], we define c̈ and
s̈ sampling uniformly along straight lines between pairs of
points sampled from the synthesized images Gc(x), Gs(x) and
ground truth images c, s, respectively. The gradient penalty
coefficient λ is set to 10.

In order to improve perceptual quality, we measure the
image semantic similarity in high-level feature space by per-
ceptual loss [79]. It is defined as:

L p = E[||φl(Gc(x) ) − φl(c)||1], (5)

where φl(∗) represents the features of the l-th layer of the
pre-trained network. In our experiment, we use the ReLU [80]
activated conv3_3 layer of VGG-16 network pre-trained on
ImageNet dataset.

The total loss function of the generator for the second stage
includes Equation 1, 2, 3, and 5, which is given by:

Loss = L1 + λG LG + λA L A + λp L p. (6)

IV. EXPERIMENT

A. Implementation Details

For training set, a subset of ImageNet [46] (0.13M images)
is utilized, which is only one tenth of the size of training
dataset comparing with the state of the art [33], [37], [38],
[43]–[45]. We randomly sample images from 1000 cate-
gories, corresponding to the proportion of the entire dataset.
It provides enough modes for SCGAN to learn the mapping
robustly. The images are rescaled to 256 × 256. They are
normalized within [-1, 1] range and an additive Gaussian
noise with standard deviation of 0.005 is added. In addition,
the corresponding saliency maps are generated by [70], which
are set as ground truth. They are normalized in [0, 1] range,
which represent different levels of significance for salient
regions.

For network architecture, the global feature network is
trained from scratch until its Top-1 accuracy is verified
to be sufficiently high and stable. It adopts VGG-16-Gray
architecture, where each max-pooling layer is replaced with
strided convolutional layer to maintain more spatial infor-
mation. Batch normalization [81] and LeakyReLU activation
function [82] are attached to each convolutional layer of
SCGAN except the input and output layers. The reflection
padding scheme is utilized to avoid border effects. Moreover,
with spectral normalization [83] attached to each discriminator
layer, the SCGAN meets 1-Lipschitz continuity.

For optimization details, the parameters of SCGAN are
initialized using zero mean Gaussian distribution with standard
deviation of 0.02 except global feature network. We train
SCGAN generator with L1 loss and attention loss for
10 epochs at first stage and the learning rate is fixed to
2 × 10−4. At the second stage, we train the generator and
discriminators collaboratively for 30 epochs. The initial learn-
ing rate for both generator and discriminator are 1 × 10−4

but halved every 10 epochs. We use Adam optimizer [84]
with β1 = 0.5, β2 = 0.999 and batch size of 8. The
discriminators and generator are trained alternately until the
SCGAN converges. The trade-off parameters λG , λA, and λp

are empirically set to 0.05, 0.5, and 5, respectively. We imple-
ment our system with PyTorch framework and train it on a
NVIDIA Titan Xp GPU. It takes approximately 7 days to
complete the whole training process.

B. Experimental Settings

1) Dataset: To assess colorization quality, we set up
10000 images from ImageNet validation set [46], same as
in [33], [37] for evaluation. They are randomly selected and
have a balanced representation for ImageNet categories. All
the validation images encoded as grayscale are excluded and
rescaled to 256×256. To further demonstrate the effectiveness
of several network components, we use both quantitative and
qualitative analysis.

2) Quantitative Metrics: On the one hand, we apply
pixel-level PSNR (peak signal to noise ratio) and SSIM
(structural similarity index) [85] metrics to evaluate the pixel
fidelity of an image. On the other hand, since there might
be many reasonable color guesses given the grayscale input,
we use high-level Top-1 accuracy (computed by a well-trained
VGG-16 [48]) to measure semantic interpretability of synthe-
sized images.

3) Color Colorfulness Index: In addition, we firstly use a
new non-reference evaluator called CCI (color colorfulness
index) for colorization evaluation. Basically, CCI is a pro-
fessional index to measure the color vividness and natural-
ness [86]–[88]. Compared with traditional PSNR, CCI focuses
more on color shift and saturation level. It can be viewed
as a significant index for evaluating color reasonability of
generated images and is defined as:

CC Ik = Sk + σk, (7)

where Sk is the average saturation of image k, and σk is
the standard deviation. Note that CCI varies from 0 (achro-
matic image) to ∞ (most colorful image). However, the opti-
mum range of CCI for a generated color image is between
16 and 20 based on large amount of experiments [88]. The
correlation of optimum range of CCI with human perception
equals to 95.3%. Since the human visual system (HVS)
captures color information in opponent color space [87], [88],
the RGB image is first transformed into opponent color
space to compute CCI value. The transformation functions are
defined as:

rg = R − G, (8)

yb = (R + G)/2 − B. (9)
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TABLE I

COMPARISON RESULTS OF SCGAN AND STATE-OF-THE-ART FULLY AUTOMATIC COLORIZATION ALGORITHMS

Hasler and Suesstrunk [86] proposed a more accurate
method for computing CCI, which is used in our experiment
and defined as:

CC Ik = σrgyb + 0.3μrgyb, (10)

σrgyb =
√

σ 2
rg + σ 2

yb, (11)

μrgyb =
√

μ2
rg + μ2

yb, (12)

where σ∗ and μ∗ represent standard deviation and mean value,
respectively. We calculate the ratio of the number of generated
images in optimum range to the whole 10000 validation
images, which represents the reasonability degree for the
colorization system.

4) Human Perceptual Evaluation: Since the evaluation of
color naturalness, colorfulness, and color bleeding removal are
highly subjective, we perform a qualitative perceptual evalua-
tion. The color naturalness denotes whether colorized images
are similar to real-world images. It emphasizes color reason-
ability rather than high brightness or vividness. Conversely,
color colorfulness score is high as long as generated images are
very colorful, even though the color is not authentic. Moreover,
color bleeding artifact exists in an image when color of one
object permeates through other objects. The color bleeding
removal judges the ability of colorization systems to prevent
or reduce such artifact.

There are overall 20 observers participating in the test.
Each observer was given 30 groups of grayscale images,
ground truth colorful images, and images colorized by differ-
ent algorithms. For each result, the observer was required to
decide its color naturalness and severity of color bleeding by
scoring 0-10. For instance, 0 represents the most achromatic
or severely color bleeding images and 10 indicates the reverse.
Finally, we calculate the average score across all 30 colorized
images and from every observer.

C. Comparison With State of the Art

We utilize 7 state-of-the-art fully automatic algorithms [33],
[36]–[38], [43]–[45] for comparisons. Some colorized results
of proposed SCGAN and other methods are shown in Figure 4
for qualitative measurement. The results from [33], [38], [43]
look more unsaturated than others in the second and fifth
columns. In the third and fourth columns, there is seman-
tic confusion effect. For instance, the grass of fourth row
from [36], [37] is polluted since the methods fail to classify

grass and wave with similar jagged edges. Moreover, the color
of sea permeates through fish, as shown in fifth row from [37],
[44], [45]. In sixth row from [33], [36], [38], [44], the colors
of some fruits bleed into others. However, the results from
proposed SCGAN are more reasonable and natural. For human
perceptual evaluation, the scoring results are summarized
in Table I. The SCGAN has better performance than other
methods since it produces more natural colors. The saliency
map could provide attention segmentation for SCGAN, which
is beneficial for removing color bleeding effect.

In addition, the results of quantitative metrics are shown
in Table I. SCGAN ranks first in the SSIM metric. It means
that proposed system could accurately model the perceptual
structure of reconstructed images. As PSNR is not highly
related to human visual system (HVS) [85], SSIM is proposed
to grasp the structural characteristics (luminance, contrast,
and structure) of the image. We think SSIM is better to
estimate whether the colorization is distorted or not. The
proposed SCGAN with high SSIM can generate structural
consistent results compared with original color images, which
demonstrates the colorization is more reasonable. The SCGAN
also has sound results across other quantitative evaluators.

The CCI distributions of all validation images for different
algorithms are shown in Figure 5. On the one hand, meth-
ods [36], [37] have larger CCI means and variances than
others, indicating that the colorization is very saturated and
color shifts very much in many generated images, respec-
tively. Moreover, the method [37] has the best performance
of color colorfulness but the worst color bleeding removal.
It demonstrates CCI metric focuses more on color reason-
ability and contrast. On the other hand, methods [33], [38],
[44], [45] obtain rational CCI distribution and good PSNR
and SSIM values since they generate more natural coloriza-
tion. But they have less scores in perceptual evaluation and
SSIM than SCGAN. Finally, the proposed SCGAN occupies
the most compact distribution over CCI near the optimal
range [16, 20] than other methods obviously. It demon-
strates that our system produces plausible colorization and
has less probability to encounter semantic confusion and color
bleeding.

The human perceptual evaluation indicates that SCGAN
achieves the best performance over color naturalness and
color bleeding removal. Since saliency map assists the system
to retain a clear separation of foreground and background,
the color bleeding effect of SCGAN is less than other methods.
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Fig. 4. Comparison of colorization results between the proposed SCGAN and the state-of-the-art approaches [33], [36]–[38], [43]–[45] by 10 samples.
The first column shows the grayscale input images. Column 2-9 show automatically generated results from the state-of-the-art approaches and the proposed
method. The final column shows the ground truth images.

Moreover, we use attention loss with adversarial training
in SCGAN. They promote the system to strengthen coloriza-
tion on key objects. Thus, SCGAN produces more natural
colorizations. Zhang et al. [37] obtains the highest color color-
fulness due to its classification-based training scheme. From
these experiment results, we notice that CCI ratio metric is
highly related to color naturalness. When the average of CCI
is very high, the system tends to produce colorful samples,
although they may be not natural. However, it cannot represent
the ability of removing color bleeding since it focuses on the
global characteristic of images.

D. Ablation Study

In order to further demonstrate the effectiveness of several
network components, we analyze different components of our
system on validation dataset quantitatively. Basically, there are
7 settings to exclude some parts from original structure:

1) SCGAN w/o attention loss. Drop the saliency prediction
network and its corresponding discriminator in order to ana-
lyze the effect of attention mechanism of system. We utilize
twice amount of data (one fifth of ImageNet training set) for
training to demonstrate the effectiveness of saliency map-based
guidance method;
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Fig. 5. Box plot of CCI distributions for the proposed SCGAN and state-
of-the-art methods.

2) SCGAN w/o GAN loss. Drop the two discriminators of
colorized images and weighted images, with the adversarial
training to analyze the adversarial loss in SCGAN. This setting
will not affect the architecture of generator;

3) SCGAN w/o perceptual loss. Drop the perceptual loss
at second stage. This setting only changes the optimization
method, while the network architecture is remained;

4) SCGAN with LSGAN loss. Replace original WGAN-GP
training strategy with LSGAN [74] at the second stage.
It minimizes the Pearson χ2 divergence between the generated
samples and ground truth;

5) SCGAN w/o pre-weights. Initialize the parameters of
global feature network using Gaussian distribution. It evaluates
the utility of pre-trained weights for global feature network
since SCGAN architecture is unchanged;

6) SCGAN w/o global feature. Delete the global feature
network to analyze the effect of this module. Although it
will reduce complexity of the system, the main idea of this
setting is to evaluate the effectiveness of semantic context
information;

7) SCGAN with L2 loss. Use L2 loss instead of L1 loss
at both training stages. The optimization method remains
unchanged.

As shown in Figure 6, the full SCGAN has the best
perceptual performance compared with the six ablation study
settings. If global feature network or its pre-trained weights are
removed, the color of generated images is unimaginative. The
system without global semantics predicts wrong colorizations
and causes semantic confusion. The attention loss emphasizes
the significant parts, thus the main objects in colorizations
are clear separated from backgrounds. For instance, the color
of chicken in Figure 6 first row is obvious for full SCGAN;
whereas the edges between chicken and background are blurry
for system without attention loss. In addition, the perceptual
loss and GAN loss enhance the sharpness of colorization.
In Figure 6 column 3-5, the samples are less natural and
colorful than full SCGAN.

The quantitative analysis is summarized in Table II. Firstly,
if visual saliency information and attention branch are removed
(setting 1), the system tends to generate samples with shifted
distribution over CCI. Although we utilize double amount of
data to train the system, it lacks visual saliency information

TABLE II

QUANTITATIVE RESULTS OF ABLATION STUDY ON
10000 IMAGENET VALIDATION SET

so that the optimization is altered. Moreover, we also train
the system without attention loss using same data (one tenth
of ImageNet training set) compared with normal process.
The performance is still inferior to full losses. Secondly,
GAN loss (setting 2) promotes the SCGAN to produce more
colorful images. The perceptual loss (setting 3) facilitates
the semantic interpretability of system and generates sharper
images. L1 loss performs slightly better than L2 loss (set-
ting 7) according to color abundance. Thirdly, the SCGAN
without global feature network or its pre-trained weights
(setting 5 and 6) have much worse ability to represent the
semantics, leading to bad results over the metrics, especially
classification accuracy. Finally, SCGAN with LSGAN loss
(setting 4) produces worse results than the WGAN-GP loss.
In conclusion, each component of the proposed SCGAN is
indispensable.

E. Saliency Map-Based Guidance Method

The SCGAN produces colorization with corresponding
saliency map for grayscale image, which enhances the atten-
tion interpretation ability. As aforementioned, saliency map
provides attention intensity and segmentation information [89]
in an unsupervised manner. We illustrate the attention region
by the multiplication between the colorization and saliency
map and comparison with SCGAN without saliency map,
as shown in Figure 7. Firstly, the foreground objects are
obviously highlighted in all generated colorizations (last col-
umn of Figure 7). The saliency maps may contribute to less
color bleeding effect since the foreground and background
are well separated. Secondly, the colorizations generated by
full SCGAN are more colorful than it without saliency map,
especially the key objects. For instance, in 1st and 4th rows,
the cheetah and bird colorized by full SCGAN are more
realistic. As a proxy task, the generated saliency map assists
the system to pay more attention to visually important regions.
This mechanism can be viewed as a guidance, making SCGAN
more efficient at training stage.

In order to further demonstrate the saliency map is more effi-
cient, we propose to compare the variance of color for salient
regions and the opposite. To measure color characteristics,
the H channel in HSV color space is utilized in our experiment.
Since the saliency map is irregular, we alternatively choose
small patches (64 × 64 in experiment) of each training image
to include high response area. The definition of salient region
in RGB image is that there should be at least 80% pixels
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Fig. 6. Comparison of colorization results of different ablation study settings and full SCGAN. The first column shows the grayscale input images.
Column 2-9 represent the colorization results of different settings. The final column is the ground truth colorful images.

having high value in same spatial location of corresponding
saliency map. Conversely, unsalient region indicates the no
response area. For fair comparison, we also count random
regions as reference, as shown in Figure 8. The H value
represents the color category, expressed by angle in HSV color
space. The H variance of salient regions is much larger than
unsalient regions that demonstrates they contain more colors.
At training, the saliency map with attention loss stresses such
regions, which contributes to the regression of diverse colors.

Moreover, the colorization system tends to learn green
and blue colors first (please see supplementary for examples)
since they are common in natural images, e.g. lawn and sky.
The salient regions have less percent (26.56%) of green-blue
range than randomly selected regions (30.52%) and unsalient
regions (31.29%), as shown in Figure 8. Thus, other colors
are more probable to be utilized for SCGAN optimization.
It can be regarded as a color augmentation. We believe this
mechanism enhances colorization system to produce more
plausible results.

F. Colorizing Multispectral Images

In order to further verify the advance of SCGAN architec-
ture and saliency map-based guidance method, we perform
a multispectral image colorization experiment on KAIST
multispectral pedestrian detection dataset [50]. There are
four network architectures used for comparison: Pix2Pix [36]

TABLE III

QUANTITATIVE RESULTS OF MULTISPECTRAL IMAGE

COLORIZATION ON KAIST VALIDATION SET

and it with proposed saliency map-based guidance method
(Pix2Pix+Sal), UResNet [2] and it with proposed saliency
map-based guidance method (UResNet+Sal), and the pro-
posed SCGAN. The L1 loss is adopted for optimization while
attention loss with same trade-off parameter λA is utilized for
Pix2Pix+Sal, UResNet+Sal and SCGAN. Each network is
trained for 20 epochs from scratch. Some colorized results are
shown in Figure 9. If the network is trained with attention
loss, the output is richer in color and clearer, e.g. the cars
in Figure 9. The results from SCGAN are sharper than other
methods. Moreover, the quantitative analysis on KAIST vali-
dation set is summarized in Table III. With saliency map-based
guidance method, UResNet can obtain higher PSNR and SSIM
values. Since the KAIST dataset only contains approximately
90000 training pairs, which are much less than ImageNet,
the function of the proposed saliency map-based guidance
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Fig. 7. Attention representation of the proposed SCGAN. The columns from
left to right indicate that input grayscale images (1st), colorizations generated
by SCGAN without saliency map (2nd), colorizations generated by full
SCGAN (3rd), ground truth colorful images (4th), saliency maps generated
by full SCGAN (5th), ground truth saliency maps (6th) and weighted images
(7th), respectively. The weighted images are obtained by the multiplication of
two outputs from SCGAN full system.

Fig. 8. Illustration of histogram of H channel for salient, unsalient and
randomly selected regions. The percent represents the ratio of green, cyan,
and blue color to all colors. The figure at lower right corner represents the
patch selection scheme for the experiment. The rectangles with different colors
imply 3 kinds of patches. The bird image is a training sample from ImageNet
dataset.

method is evident. The SCGAN framework achieves the best
performance across all the methods, since the convolutional
layers of global feature network are general to multispec-
tral images that boost the performance. It demonstrates the
SCGAN network architecture is also more advance.

Fig. 9. Comparison of multispectral image colorization results between
the proposed SCGAN and other approaches [2], [36]. The first row is the
multispectral input while last row is ground truth visible RGB images. Row
2-6 represent colorization results of proposed SCGAN and other methods.
We highlight two patches in each pair and the location is indicated by green
and yellow rectangles.

Fig. 10. Comparison of other legacy image-specialization colorization
algorithms. The first row is the grayscale input. Row 2-4 are colorization
results of the proposed SCGAN, DeOldify [45], and ColouriseSG [90],
respectively.

G. Colorizing Legacy Photographs

We also test SCGAN on legacy black and white photographs
and illustrate the colorization results along with the results of
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Fig. 11. Colorization results on historical photographs. Our colorization system still predicts visually high-quality reasonable images. The photos were taken
from the US National Archives (Public Domain). For more colorized legacy photographs, please see the supplementary material.

Fig. 12. Comparison of colorization results between the proposed SCGAN and the state-of-the-art exemplar-based algorithms [18], [23], [24], [26]. The
first column shows the automatic colorization results of proposed method. The second column shows the grayscale input images. The third column is the
references for remaining four algorithms, which are shown in column 4-7.

two recent open-use automatic colorization systems [45], [90],
as shown in Figure 10 and 11. Due to the age and type of
past photos and films, the statistic details are quite different

from our training set and their edges are quite blur. However,
SCGAN could produce plausible colorizations, which demon-
strates its strong fitting ability. Since the training samples
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Fig. 13. Comparison of the two types of saliency maps. The left part of the figure includes the samples from ImageNet training set; whereas the right part
represents the colorization results by SCGAN trained with different saliency maps. The first row and last row represent the grayscale input and ground truth
RGB images. The saliency maps from fixation prediction and salient object detection are computed by [96] and [70], respectively.

Fig. 14. Examples of the most common failure cases. The top, middle and bottom rows include grayscale ground truth, the generated images, and colorful
ground truth, respectively. The SCGAN may be sensitive to small objects like complicated scene, special patterns, and details respectively as shown in left
3 samples. The images generated by SCGAN may be not very colorful, as illustrated in the samples.

and legacy photographs are both real-world images, we fur-
ther assume that SCGAN tends to learn general information
primarily. During the optimization process, the system first
reconstructs the profile of the objects and background. Then,
it adds simple colors, like green and blue. Finally, it fixes the
details and attaches special colors (please see supplementary
material for illustration). It indicates that CNN-based models
have strong ability to capture low-level image statistics [91]
while natural images have similar statistical features. It demon-
strates that SCGAN has great generalization ability on legacy
photographs.

H. Comparison With Example-Based State of the Art

We also compare our system with state-of-the-art
example-based algorithms [18], [23], [24], [26]. We report
the comparison results in Figure 12. All the test grayscale
images are accompanied with corresponding references. Com-
pared with the example-based methods, the proposed SCGAN
can still generate realistic and reasonable colorizations even
though there are no references. The color styles of the images
generated by the proposed method are implied in the training
strategy and network architecture.

I. Discussion on the Usage of Saliency Maps

Basically, there are two methods [92], [93] to label the
“ground truth” saliency maps: fixation prediction [94]–[100]

and salient object detection [57]–[72], [101], [102]. The
saliency maps from fixation prediction record the eye fixations
of a user; whereas the saliency maps from salient object
detection focus more on entire key objects. We show some
saliency map samples generated by fixation prediction [96]
and salient object detection [70] in Figure 13, respectively.
The saliency maps from salient object detection have clearer
edges of objects than from fixation prediction, which are
beneficial for removing color bleeding artifact. Also, the key
objects have more vivid colors than other areas. To compare
the effects of two types of saliency maps, we additionally
train the SCGAN using the saliency maps generated from
fixation prediction [96] and salient object detection [70],
respectively. The training strategies for them are the same.
Some generated saliency maps and colorization samples are
shown in Figure 13. In first three columns of right part of
Figure 13, there are less color bleeding artifacts for SCGAN
with saliency maps from salient object detection. While in last
three columns, the colorizations from row 3 are more natural
than row 2. In conclusion, the SCGAN trained with saliency
maps from salient object detection achieves better perceptual
quality. The saliency maps in this paper denote the ones from
salient object detection.

J. Failure Cases

The proposed SCGAN can predict relatively reasonable col-
orizations in many samples; however, there are some common
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failure cases, shown in Figure 14. It produces colorization
and saliency map jointly so that core objects in images are
well highlighted. There is less color bleeding effect in most
of generated images. However, there is no specific loss item
or network design for enhancing colors of details or small
objects. Thus, SCGAN is difficult to identify plausible colors
for such objects. Some failure cases are illustrated in Figure 14
first row. As we only use 0.13M training images, the system
cannot include all the situations of input. Some generated
images are not very colorful, as shown in Figure 14 second
row. In the future, we will develop new methods generalized
to small objects while generating more realistic colors.

V. CONCLUSION

In this paper, we presented a hierarchical GAN archi-
tecture called SCGAN. It generates perceptually reasonable
and photorealistic colorful images and their corresponding
saliency maps from grayscale input images automatically.
This is achieved through a pre-trained VGG-16-Gray global
feature network embedded to mainstream so that low-level
and high-level semantic information are combined. In addition,
we proposed a novel saliency map-based guidance method to
perform the joint colorization and saliency map prediction.
These designs help the system minimize semantic confusion
and color bleeding in the colorized images. The proposed
SCGAN framework can be trained with only one-tenth of
ImageNet training data to achieve state-of-the-art colorization
performance. Furthermore, we found that our system has
potential to colorize multispectral images and legacy pho-
tographs with sundry scenes. Finally, we validated our system
on ImageNet dataset against several state-of-the-art methods.
Experiment results demonstrated that SCGAN can generate
high-quality reasonable colorizations.
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