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tion in improving the performance of human parsing. However, ambiguous objects, small scaling and occlusion
problems are still the bottlenecks. In this paper, we propose a novel framework called - Foreground-Edge-Aware
Network (FEANet) with DenseASPOC context module to further enhance the segmentation performance for
human parsing. We claim that the fusion of foreground and edge information can effectively segment occluded
regions by reducing the impact of pixels occupied by non-human object parts while persevering boundaries be-
tween each class. Moreover, we introduce the Dense Atrous Spatial Pyramid Object Context (DenseASPOC) mod-
ule to address the problem of small and ambiguous objects by empowering feature extraction ability with solid
spatial perception and semantic context information. We conducted comprehensive experiments on various
human parsing benchmarks including both single-human and multi-human parsing. Both quantitative and qual-
itative results show that the proposed FEANet has superiority over the current methods. Moreover, detailed ab-
lation studies report the effectiveness of the employment on each contribution.
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1. Introduction

Human parsing deals with assigning a predefined label to each cor-
responding area of the human body such as hair, left-arm or dress, etc.
Beneficial to this image-understanding-type task, many high-level com-
puter vision applications can be realized such as clothing retrieval [1],
clothing cosegmentation [2], object extraction for sports [3], fashion
synthesis [4] and virtual try-on [5].

Semantic context information is an important component to boost
segmentation performance by extracting semantic features for multi-
scale objects. For example, DeepLab [6] proposed an atrous spatial pyr-
amid pooling (ASPP) to utilize different rates of dilated convolution so
that multi-scale features could be obtained by a large perceptive field
of view. PSPNet [7] used the pyramid pooling module (PPM) to down-
scale and upscale different sub-region layers so that a comprehensive
pooling representation can be concatenated. Although these context
modules have achieved remarkable results in extracting semantic con-
text information, their ability of extracting features on multi-scale ob-
jects (especially small-scale objects such as glove, socks, pants or
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scarf) is still weak. Examples can be viewed in Fig. 5(a)(b). To address
these issues, we propose a new context module called Dense Atrous
Spatial Pyramid Object Context (DenseASPOC) to fuse dense spatial in-
formation with object context knowledge. We claim that the dense con-
nection among dilated convolutions accompanying with self-attention
operation can effectively capture features for small-scale objects. It is
because the dense dilated convolution is sensitive to geometric infor-
mation. Self-attention operation can produce clues of object context.
Such combination can consolidate the strength of feature extraction
on multi-scale objects.

Apart from context module, using additional information as guid-
ance is a common method to help network converge at an optimal
point. For example, JPPNet [8] started cloth parsing work based on
low-level image decomposition and pose landmark estimation. CE2P
[9] established a new branch to predict the edge map for boundary en-
hancement. These guidance aims at remaining the characteristics of
human body parts. However, the effectiveness is concerned when the
non-human body parts overlap with the body. The occlusion effect
hampers the correspondence among human body parts leading to un-
satisfactory parsing result such as examples in Fig. 5(e)(f). Inspired by
these works, we propose to filter out pixels occupied by non-human ob-
ject parts by using the foreground information while preserving the
boundaries by using the edge information. We believe that the fusion
of foreground information and edge information can leverage a better
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human parsing segmentation result by addressing the problem of occlu-
sion and boundary separation.

In this paper, we propose an effective human parsing network called
Foreground-Edge-Aware Network (FEANet) with a DenseASPOC con-
text module to accomplish this challenging high-level computer vision
task. The main idea of the proposed FEANet is to strengthen the ability
to globally reduce the impact of pixels occupied by non-human object
parts while locally preserving human part boundaries by using the fore-
ground information and edge information. Specifically, we design a
multi-purpose network that splits a common backbone into two
branches including the foreground branch and edge branch. For the
foreground branch, we take the advantages of spatial and semantic con-
text module to capture the features of multi-scale objects, so that a fast-
scanning purpose for the human part object can be achieved. For the
edge branch, we focus on interpolating low-resolution feature maps ac-
companied with high-resolution maintenance. It aims to preserve the
clear boundaries between each human part by embedding proportional
semantic context information. Fig. 1 shows some examples of the addi-
tional guidance information used in our FEANet. For the DenseASPOC
context module, it can consolidate the semantic meaning for certain ob-
jects by leveraging the relationship between geometric location and
non-local information. It can enhance the ability of context feature ex-
traction compared with existing context modules.

Our contributions can be summarized in the following three aspects:

Fusion of foreground and edge information. We propose a novel net-
work that uses foreground and edge information to enhance human
parsing performance. This approach is to improve the global ability
to reduce the impact of pixels occupied by non-human object parts
while preserving the boundaries of local human object parts.

DenseASPOC context module. We further study the method of
extracting semantic features of multi-scale objects by combining
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geometric context with non-locally object-based context knowledge
in a dense manner which can encapsulate deeper semantic context in-
formation.

» Experiments for single/multiple human parsing. We also conduct
comprehensive experiments on several human parsing benchmarks
demonstrating the generality of FEANet. The experimental results il-
lustrate the effectiveness of FEANet for human parsing task. It achieves
superior performance compared to the state-of-the-art approaches.

2. Related work

In this section, we give a brief survey of related works for semantic
segmentation and human parsing domain.

2.1. Semantic segmentation

Fully Convolution Network (FCN) [10] was a prominent architecture
for semantic segmentation by using deconvolution and fusion of
pooling layers. Zhao et al. [7] developed a pyramid pooling module
(PPM) in PSPNet to downscale and upscale different sub-region layers
so that a comprehensive pooling representation could be concatenated.
Similarly, Chen et al. [6] used different rates of dilated convolution to
form an atrous spatial pyramid pooling (ASPP) module in DeepLab in
order to enhance the context and details for feature perception. In addi-
tion to ASPP, Chen et al. [11] further combined the ASPP context module
with encoder-decoder architecture in DeepLab to allow the network to
capture features in both cross and intra layers. By extending ASPP [6],
Yang et al. [12] proposed a DenseASPP module to assemble different di-
lated branches in a dense manner to solve the multi-scale objects prob-
lem by extensive global context information extraction. Although these

Parsing
GT GT

Fig. 1. It shows that not only does the FEANet correctly segment the final human parsing labels, but it also performs accurate foreground extraction and edge detection simultaneously.
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state-of-the-art methods perform well in some semantic segmentation
tasks such as scene parsing, they cannot be directly transferred to
human parsing task. It is because the continuous downsampling opera-
tion by strided convolution and pooling method cause the problem of
neglecting small objects and unclear boundaries between human parts
which are two major challenges in human parsing.

2.2. Human parsing

Recently, some interventions utilized high-resolution representa-
tion. Liu et al. [13] proposed a braid module in BraidNet to exchange
two-stream networks with low and high resolutions. It claimed that a
model should learn high-level semantics from a deep yet narrow net-
work while low-level spatial details from a shallow but wide network.
With a similar hypothesis, Wang et al. [ 14] created a new backbone uti-
lizing consistent high-resolution representation in the whole HRNet
while interchanging low-resolution representation at the end of fusion
sub-layers. HRNet [14] demonstrated that exchanging semantic
information across different resolutions can preserve the detailed infor-
mation for semantic segmentation. Last but not least, object-context-
based methods had been applied to human parsing as well. For example,
Yuan et al. [15] applied the object-context module in OCNet in order to
exploit the object-context information to renovate object completeness
via self-attention [16,17] techniques. Li et al. [ 18] demonstrated that ap-
plying non-local operation on the context module can effectively extract
global information. Wang et al. [ 19] extended the object-context module
in OCNet [15] to a comprehensive object context representation pro-
posed in OCR by building a relationship between object representation
and pixel representation via predicting soft-object regions in advance.

To put more emphasis on the boundary among objects, Ruan et al.
[9] suggested splitting a network CE2P into two branches to jointly pre-
dict label map and edge map for the input image. It showed that edge
information was an important factor to isolate human part objects
with precise boundary enhancement. However, we believe that not
only does the edge information help network to converge, the fore-
ground information can be served as a guide to identify the non-
human part regions. Therefore, we propose a method by fusing the
edge and foreground information with the FEANet so that the occlusion
issue can be solved. Moreover, the edge annotation used in CE2P [9] by
computing the correlation of adjacent pixels cannot generate noise-free
ground truths due to coarse label annotation quality. We also introduce
a new method to generate a noise-free ground truth of edge map.

3. Proposed method
3.1. Problem definition

Human parsing, a sub-task of semantic segmentation particularly for
performing analysis on human body parts, is defined to predict class
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labels for every pixel in a given image so that a class label map can be

produced. Mathematically, the input image is an RGB image IER"*H*¢
where it consists of dimension width W, height H and channel C = 3.
The output is a pixel-wise label map M € R"* which has the same di-
mensions as the image I. For each pixel value my, of label map M, the
corresponding value indicates the classified class C € {1,...,c} for the
pixel iy, of input image I where c is the total number of classes of
interest.

3.2. Network architecture

The overview of the architecture for FEANet is shown in Fig. 2. The
proposed FEANet is built based on the previous state-of-the-art method
CE2P [9]. The network contains a ResNet-101 [20] as backbone which is
widely adopted to extract sematic information in segmentation task.
The final two feature maps namely Residual Block 4 and 5 of the back-
bone are passed to a context module composing a Densely connected
Atrous Spatial Pyramid with an Object Context embedding operation.
It is able to further exploit deep semantic low-level features in a fusion
of geometric and object-based manner. The Foreground Aware Module
(FAM) utilizes the feature from DenseASPOC and the shared feature Re-
sidual Block 2 from ResNet-101 [20] with skip connection to extract
foreground features. Meanwhile, the Edge Aware Module (EAM) com-
bines the multiple shared features including Residual Block 2, 3 and 4
from ResNet-101 [20] with a duplicated DenseASPOC module to per-
form edge detection. Finally, the Human Parsing Module (HPM) fuses
all feature maps from FAM and EAM to refine the result of multi-class
human parsing segmentation.

3.3. DenseASPOC context module

The objective of our DenseASPOC module is to strengthen the recep-
tive field of the spatial context while retaining object context informa-
tion. Inspired by [15], it followed similar intuition of self-attention
approach and a densely connected atrous spatial pyramid pooling
method. We advocate to enhance the ability of context extraction by
densely combining geometric context with non-locally object-based
context knowledge so that a correlation of geometric and semantic sim-
ilarity information can be encapsulated. An illustration of DenseASPOC
context module can be found in Fig. 3.

The purpose of object context pooling operation is to find out a pixel
i belonging to one of the categories C. We apply a non-local operation
that computes the weighted mean of feature map to capture a long-
range dependency from other references. Assuming the output feature
layers from ResNet-101 [20] is X € RW***F we separately apply two
convolution operations with an 1 x 1 kernel following a batch normal-
ization [21] layer and a ReLU [22] activation layer to transform two dis-
tinct feature maps serving as the query and key representation.

Q : RWHXF _ RWxHxQ qpq o RWHXF  RWH<K 3re two feature
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Edge Aware Module (EAM)

Human Parsing Module (HPM)

Convlxl
——>|

%)
NN T »
Convix RTSB

—!

Residual Transitional Sum Block (RTSB)

T»{ Conv3x3 H Convlxl HBﬂlchNonn ®

£

Fig. 2. Overview of the network architecture for the proposed FEANet.
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Fig. 3. Difference between various atrous spatial pyramid approaches. (a) Atrous Spatial Pyramid Pooling (ASPP) [6] module. (b) Dense Atrous Spatial Pyramid Object Context

(DenseASPOC) module.

transformation functions where Q = K. Reshaping a three-dimensional
matrix to two dimensional vectors for matrix multiplication, we can for-
mulate the object context estimation representation .7 € R¥*N as fol-
lows,

exp (Q - k')

hy =
N e (Qn - k)

(1)

where N = W x H and normalizing with a soft-max activation function.
Then, we aggregate context estimation representation with a value rep-
resentation transformed from X. It can effectively establish the relation-
ship between pixels with the object context. The value transformation
function can be expressed as V: RW*P*F _ RNV combining with
reshaping operation. The two-dimensional object context aggregation
OERMY can be calculated by multiplying the object estimation repre-
sentation with the value representation such as followings,

N
0 = Z; hyv; 2)
j=

where V; indicates the j™ row of categorical representation. After re-
versely reshaping ©eR?*"*V we can obtain the final object context
representation.

Strengthening the ability feature extraction is another direction. We
propose to make a dense connection among all the dilated convolutions
within our context module. It creates a cascaded feature pyramid to
strengthen the ability of feature extraction. Reviewing the traditional
atrous convolution, it uses different dilated rates to expand the
convolutional area while the dimension of feature map output is the
same as input .77 € R"*H<C which can be represented as followings,

K
Hy qli] = ’Z X[i + d-k]-wk] (3)
k=1
where K denotes the kernel size, d is the dilated rate and w{k] is the k"
row of the kernel filter. Similar with ASPP [6] module, it concatenates all
the features map from different dilated rates, it can be formulated as fol-
lows,

Y=«, dacpHk.a(X) (4)

where D is a vector containing all dilated rates such as (3,6,12,18,24)
and the Il operator indicates concatenation. Combining with the object
context sub-module, it can be represented as below,

y=00n(,, 1 HaX)) 5)

where O is the object context pooling which has been elaborated above
and the Il operator indicates concatenation. By making a dense connec-
tion, it stacks all the outputs of the dilated layers together to produce a
multi-rate atrous convolution. The final structure of DenseASPOC is
shown in Fig. 3(b). The formulation can be calculated as follows,

y= O(X)II( I I

(D'CD)(k,dC[D"..D']) HK'd(X)> ®)

With such cascaded and parallel connection architecture, the
DenseASPOC can further enlarge the receptive field of spatial context in-
formation preserving details of multi-scale shapes meanwhile it can
yield a long-range dependency of object-based relationship through
the self-attention operation.

3.4. Foreground/edge aware module

For the FAM, we take the advantages of spatial and semantic context
module to capture the feature of multi-scale object so as to achieve the
purpose of scanning human part objects. To maintain high-resolution
characteristics, we concatenate the shared feature Residual Block 2
from the backbone with the output from the context module. It can per-
verse more spatial details during the encoding stage. By employing an
1 x 1 convolution, we can decode the feature layers to a two-channel
foreground map.

For the EAM, we focus on interpolating low-resolution feature maps
accompanied by the high-resolution maintenance while embedding a
proportional semantic context information to preserve clear boundaries
between each human part. We employ an 1 x 1 convolution with 256
filters and 3 x 3 based Residual Transitional Sum Block (RTSB) on the
shared feature maps Residual Block 2, Residual Block 3 and the
DenseASPOC context module. The RTSB is a simplified version of
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residual block in ResNet [23] and RefineNet [24]. In Fig. 2, it contains two
consecutive convolutions with a 3 x 3 kernel while summarizing a
weighted layer. It can help the network increase the generality and ro-
bustness which is certified in previous works [23,24]. The weight pa-
rameter alpha in RTSB is set to 0.1 referenced by the same setting as
[24]. By fusing the three transitional blocks and employing an 1 x 1 con-
volution for decoding purpose, we can decode the feature layers to a
two-channel edge map.

3.5. Human parsing module

With the aids of foreground and edge information, we can perform
human parsing by fusing the predicted feature map from the FAM and
the EAM. Unlike previous works [9], we make use of the last predicted
feature map before softmax activation instead of three intermediate fea-
ture layers. For the final classification procedures, we apply a RTSB to
ensure the robustness and a dropout layer with 0.1 dropout probability
for regularization purpose. The total loss for FEANet can be formulated
as follows,

Lmtal = )\1 Lfg + }\ZLedge + )\3 Lparsing + }\4LloU (7)

where L, Ledge and L parsing represents the loss function imple-
mented for the predicted foreground map, edge map prediction and hu-
man parsing prediction. %,y represents a loss dealing with indirect
relationship with mean Intersection over Union (mloU) metric. By mak-
ing use of a tractable surrogate for the optimization of mloU, we apply
the Lov'asz-Softmax loss [25] to optimize the network with respect to
mloU metric. We adopt dual focal loss [26] which is an adaptive
weighted loss for semantic segmentation to deal with the unbalanced-
class problem. The objective functions for £, £ eqge and £ parsing are
as follows,

M=
M=

L— — log (1—||yiJ-—y,»J||§> (8)

i

Il
_
.
I
—_

where N and M represents the height and width of the predicted map,
Il - I3 represents L2 norm operator, y; ; are the predicted pixels along
the channel vector on the feature map i row and j™ column, and ¥; j
are the pixels of the ground truth labels.

3.6. Ground truth enhancements

Previous edge map generation method, by computing the correla-
tion of adjacent pixels [9], could effectively extract the edge informa-
tion from the parsing label map. Due to coarse and noisy annotations
from the datasets, such a generation approach produces discrete
points on non-edge regions which were undesired for a ground
truth label. Fig. 4 demonstrated the effect of discrete point produced
by CE2P [9] and the enhancement of our method eliminating the
noisy points.

To refine the edge map, we firstly apply morphology closing on the
input label map M to fill up the disjoint regions. Secondly, we adopt
the Canny edge detection method to extract the boundary of the refined
label map M'. Finally, using morphology dilation operation can increase
the thickness of the edge pixels producing ye € R"*". The operation
procedures can be expressed by the following equations:

M = MKs = (M®Ks5)SKs (9)

where Ks is a 5 x 5 kernel, ® and © denotes dilation operation and ero-
sion operation respectively.

Ve = E(M') = Canny (M) ©K; (10)

where K3 is a 3 x 3 kernel, Canny(-) represents the traditional Canny
edge detection method.
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For the ground truth of the foreground label, we simply binarize the
refined label map M’ to a two-channel semantic map yp, € R"*¥. The
formulation can be calculated as follow:

1, myE(C)

) (11)
0, otherwise

Vi = F(M) = (

where F(-) represents the binarization operation, my, indicates the
pixels on the refined label map M.

4. Experiments and results

In this section, we describe the implementation details for FEANet
including datasets and pre-processing procedures. Moreover, we pro-
vide a comprehensive explanation of experimental results.

4.1. Datasets

LIP Dataset: The Look Into Person (LIP) [27] dataset is a large-scale
benchmark widely used for single human parsing. The images are col-
lected naturally from the wild where the people occur with different
poses, viewpoints, lightings and occlusions in various real-world sce-
narios. It contains 50,462 images totally, including 30,462 for training,
10,000 for testing and 10,000 for validation. Every image comes with a
fine-grained pixel-level annotation with 19 semantic human body
part classes and one background class.

ATR Dataset: The Active Template Regression (ATR) [28] dataset is
another commonly used dataset for single human parsing since 2015.
The images are captured with limited conditions such as full-body espe-
cially for the commercial fashion design. There are 17,700 images to-
tally, including 16,000 for training, 1000 for testing and 700 for
validation. There are 18 human body part classes annotated with
pixel-level labels.

PASCAL-Person-Part Dataset: It is another traditional challenging
multi-human parsing dataset which is a sub-set of PASCAL-VOC 2010
[29] containing human-related samples only. There are 3533 images
with fine-grained pixel-level annotations, including 1716 for training
and 1817 for testing. By projecting class labels, there are 7 classes in
total, for example, a background class and 6 human part labels.

CIHP Dataset: Comparing with LIP [27] dataset, the Crowd Instance-
level Human Parsing (CIHP) [30] dataset is a large-scale benchmark for
multi-human parsing task. There are 38,280 images totally, including
28,280 for training, 5000 for testing and 500 for validation. The annota-
tion setting is the same as LIP [27] dataset which containing 20 catego-
ries in total including background.

4.2. Metrics

Following previous works [9,30-32], we report several evaluation
metrics on different benchmarks which are defined as:

+ mean Intersection over Union (mloU): (1¢) 2 #/(p, 5-jx:—x:)»

* Pixel-wise Accuracy (Pix Acc.): X5,

* Mean Accuracy (Mean Acc.)/average precision (Prec.): (1¢)2_ i,
* Foreground Accuracy (F.G Acc.): Zixﬁ/zip,, where i # clasSpackground
* Average Recall (Recall): (1€)X x

° Average F-1 (F'l ): (VC) (Me"”ACC'XRecall/(MeanAcc.JrRecall)) ’

where x;;is the number of pixels of class i predicted to belong to class
j, Cis the total number of classes, and p; = 2_;x;; is the total number of
pixels of class i.
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Fig. 4. Visualization of ground truth enhancement on edge map.

4.3. Pre-processing

To generalize the input size of image, we scale the size of input
image to 473 x 473 for LIP [27] dataset, ATR [28] dataset and CIHP
[30] dataset respectively, but 512 x 512 for PASCAL-Person-Part [29]
during both training and testing. For augmentation part, we apply ran-
dom scaling on the input image as well as parsing label ranging from
0.5 to 1.5. Accompanying with central cropping operation, we also flip
left and right body parts (e.g. left/right hands or legs) to maximize the
generality during inference, except PASCAL-Person-Part [29] dataset.

4.4. Experiment setting
We implement FEANet with the public framework PyTorch. Basi-

cally, we utilize ResNet-101 [23], pre-trained on ImageNet [33], as the
backbone network. We apply a modified polynomial learning schedule

. . power )
policy Irpgse* (1 — m) with the base learning rate at

0.01 and power at 0.9 for dual focal loss. The Stochastic Gradient De-
scent (SGD) optimizer is employed with mini-batch, momentum of
0.9 and weight decay of 0.0005 for training purpose. The weighting pa-
rameters A, are set to 1. All models are trained and tested on a GeForce
RTX 2080 Ti GPU. The batch size is set to 5.

4.5. Experiment result on single-human parsing datasets

To illustrate the generality of our FEANet, we evaluate it on the
single-human parsing datasets.

4.5.1. Performance on LIP dataset
As shown in Table. 1 and Table. 2, our FEANet outperforms the cur-
rent state-of-the-art methods with promising improvement in
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Table 1

Comparison of per-class [oU and mloU with several state-of-the-art methods on validation set of LIP.
Method hat  hair glove s. uclot dress coat sock pant jsuit scarf skirt face larm rarm lleg rleg L I. bkg  mloU

glass shoe shoe
Attention 58.87 66.78 23.32 1948 63.20 29.63 49.70 35.23 66.04 24.73 12.84 2041 70.58 50.17 54.03 3835 37.70 26.20 27.09 84.00 42.92
[34]

Deeplab [6] 59.76 66.22 28.76 2391 64.95 33.68 52.86 37.67 68.05 26.15 1744 2523 70.00 5042 53.89 39.36 3827 26.95 2836 84.09 44.80
SSL[27] 5821 67.17 31.20 23.65 63.66 2831 5235 39.58 69.40 28.61 13.70 22.52 74.84 52.83 55.67 4822 4749 31.80 2997 8464 46.19
MMAN [35] 57.66 65.63 30.07 20.02 64.15 2839 5198 4146 71.03 23.61 9.65 2320 69.54 5530 58.13 51.90 52.17 3858 39.05 84.75 46.81
JPPNet [8] 63.55 70.20 36.16 2348 68.15 3142 5565 44.56 72.19 2839 18.76 25.14 7336 61.97 63.88 5821 57.99 44.02 44.09 86.26 51.37
CE2P [9] 65.29 7254 39.09 3273 69.46 32.52 56.28 49.67 7411 27.23 14.19 2251 75.50 65.14 66.59 60.10 58.59 46.63 46.12 87.67 53.10
BraidNet [13] 66.80 72.00 42.50 32.10 69.80 33.70 57.40 49.00 7490 32.40 19.30 27.00 74.90 6550 67.90 60.20 59.60 47.40 47.90 88.00 54.40
FEANet(ours) 69.49 7348 47.27 37.82 69.95 37.63 56.66 50.82 76.13 33.59 2522 2731 7591 6796 7035 63.94 6337 5243 5346 88.39 57.06

validation set of LIP [27] dataset. It gets the highest mloU score of 57.06% Table 3

and mean accuracy of 71.03%.

Comparing to the approaches based on DeepLabV3 + [6] including
CE2P [9] (with PPM [7] module) and OCNet [15] (with ASPOC module),
our FEANet gets a better mloU score with 3.96% and 2.34% increment.
Comparing to other methods such as BraidNet [13] and JPPNet [8], the
proposed FEANet gets a significant improvement on every per-class
IoU score. For those small-scale objects such as hat, hair, glove and
socks, FEANet obtains improvement as well. Focusing on sunglass and
scarf class, FEANets both yields over 5% loU score enhancement. More-
over, some easily miss-classified and confusing class such left-shoe
and right-shoe, FEANet also achieves over 5% gain which is a huge incre-
ment in human parsing task. It is beneficial to the role of object context
and spatial information that can preserve such complex left-right se-
mantic meaning. In general, our FEANet performs very well in LIP [27]
dataset. It proves the effectiveness of human parsing ability when
there is a complex scenario in the wild. The result can be interpreted
as our DenseASPOC module can effectively perform semantic segmenta-
tion on human parsing by combining geometric context with non-
locally object-based context knowledge to distinguish multi-scale
objects.

4.5.2. Performance on ATR dataset

As shown in Table. 3, our FEANet significantly outperforms some
state-of-the-art methods on ATR [28] dataset. Our method achieves
the highest score in most of the evaluation metrics. More precisely,
comparing to previous state-of-the-art approach TGPNet, FEANet gets
over 1.8%,4.7% and 3.3% improvement for average precision, average re-
call and average F-1 score. Moreover, our method surpasses ATR [28]
method, which is the original maintainer of ATR [28] dataset, over 20%
enhancement on average F-1 score. Furthermore, the FEANet performs
better foreground segmentation than TGPNet. It is beneficial to the fu-
sion of the foreground-aware module and edge-aware module of the
proposed FEANet, which provides assistance for the separation of
multi-class object parts. It illustrates that the foreground information

Table 2
Comparison of human parsing performance with several state-of-the-art methods on val-
idation set of LIP.

Method Pix Acc. Mean Acc. mloU
Attention [34] 83.43 54.39 42.92
Attention +SSL [27] 84.36 54,94 4473
MMAN [35] 85.24 57.60 46.93
SS-NAN [36] 87.59 56.03 47.92
HSP-PRI [37] 85.07 60.54 48.16
MulA [38] 88.50 60.50 4930
PSPNet [7] 86.23 61.33 50.56
CE2P [9] 87.37 63.20 53.10
BraidNet [13] 87.60 66.09 54.42
FEANet (ours) 87.95 71.03 57.06

Comparison of human parsing performance with several state-of-the-art methods on test
set of ATR.

Method Pix Acc. F.G Acc. Prec. Recall F-1

Yamaguchi [39] 84.38 55.59 37.54 51.05 41.80
Paperdoll [40] 88.96 62.18 52.75 49.43 4476
M-CNN [41] 89.57 73.98 64.56 65.17 62.81
ATR [28] 91.11 71.04 71.69 60.25 64.38
PSPNet [7] 95.20 80.23 79.66 73.79 75.84
Attention [34] 95.41 85.71 81.30 73.55 77.23
DeepLabV3 + [6] 95.96 83.04 80.41 78.79 79.49
Co-CNN [28] 96.02 83.57 84.95 77.66 80.14
LS-LSTM [42] 96.18 84.79 84.64 79.43 80.97
TGPNet [31] 96.45 87.91 83.36 80.22 81.76
FEANet (ours) 96.63 87.98 85.24 84.93 85.08

can provide positive effect for human parsing task. The evaluation result
supports that our FEANet is effective on full human body parsing be-
cause full body setting is the main characteristic of ATR [28] dataset.

4.6. Experiment result on multi-human parsing datasets

Similar with single-human parsing, we compare our work with sev-
eral state-of-the-art approaches on some multi-human parsing
benchmarks.

4.6.1. Performance on PASCAL-person-part dataset

In Table. 4, our FEANet gets competitive performance over the cur-
rent state-of-the-arts. Comparing with WSHP [49], our FEANet gets a lit-
tle improvement on mloU score but superior enhancement (3.83%) on
both upper-arm and low-arm classes. However, there are rooms for im-
provement in our FEANet to achieve more gains in mloU score compar-
ing with previous state-of-the-art PGN [30] which using extra instance

Table 4
Comparison of human parsing performance with several state-of-the-art methods on test
set of Pascal-Person-Part.

Method head torso wuarm larm uleg lleg bkg  mloU
HAZN [43] 80.79 59.11 43.05 42.76 3899 3446 93.59 56.11
Attention [34] 8147 59.06 44.15 4250 3828 3562 93.65 56.39
LG-LSTM [42] 8272 6099 4540 47.76 4233 37.96 88.63 57.97
Att + MMAN [35] 82.58 62.83 4849 4737 42.80 4040 94.82 59.91
GraphLSTM [44] 82.69 62.68 46.88 47.71 4566 40.93 9459 60.16
Struc.LSTM [45] 82.89 67.15 5142 4872 51.72 4591 97.18 63.57
MulLA [38] 84.60 6830 57.50 54.10 49.60 46.40 95.60 65.10
PCNet [46] 86.81 69.06 5535 55.27 5021 4854 96.07 65.90
Holistic [47] 86.00 69.85 56.63 5592 5146 48.82 95.73 66.30
SAN [48] 86.12 7349 5920 56.20 51.39 49.58 96.01 67.42
WSHP [49] 87.15 7228 57.07 56.21 5243 5036 97.72 67.60
PGN [30] 90.89 75.12 5583 64.61 5542 51.70 95.33 68.40
FEANet (ours) 86.22 69.54 6090 60.04 51.57 49.57 9553 67.62
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information. We believe that the instance information such as bounding
box is effective in multi-human parsing so the PGN [30] yields a better
performance. On the other hand, the FEANet may suffer from insuffi-
cient generality of small-scale dataset that containing around 1700
training samples and 7 classes only. It limits the ability of the dense per-
ception from DenseASPOC. It is implied that our FEANet relies on com-
prehensive varieties of training samples in order to maximize the
effectiveness of the foreground and edge modules.

4.6.2. Performance on CIHP dataset

As shown in Table. 5, our FEANet yields superior performance com-
paring with other state-of-the-art solutions in terms of mean accuracy
and mloU score. In particular, FEANet gets around 1.3% and 1.8% im-
provement on mloU score over Parsing R-CNN [32] and BraidNet [13].
Noted that both of these two methods utilize extra information from ob-
ject detection task while our FEANet uses pixel-level semantic labels
only. Moreover, comparing with PGN [30], our method obtains 6.6% en-
hancement on mloU score and 10.3% improvement on mean accuracy.
This significant enhancement can be beneficial to the large amount of
training data since CIHP [30] includes much more data samples
(28,280 for training) and more prediction classes (20 classes). Although
such comprehensive generality of dataset increases difficulty of human
parsing task, it provides more perception clues for our DenseASPOC
module to distinguish the semantic meaning during inferencing. In ad-
dition, the foreground and edge modules can effectively alleviate the
impact of pixels occupied by non-human object parts while preserving
local human part boundaries. It can also interpret that our FEANet can
outperform some methods with object detection assistance when it sat-
isfies the condition that there are sufficient training samples. The result
and analysis are also matched along with PASCAL-Person-Part [29]
dataset.

4.7. Ablation study

To prove the effectiveness and robustness of our FEANet, we conduct
a series of experiments on most of our contributions. We evaluate all the
settings on the LIP [27] dataset with mloU score in Table. 6. Generally,
the full model of FEANet gains the highest mloU score compared to
other variants of FEANet. It can be interpreted that all the contributions
of FEANet get positive effect towards an accurate human parsing seg-
mentation performance. The details of each setting are described as
following.

4.7.1. CE2P

Our FEANet is built upon the previous state-of-the-art method CE2P
[9] which demonstrated remarkable result on human parsing. Compar-
ing to this approach, our FEANet outperforms 3.96% mloU score which is
a huge improvement. With the same PPM [7] context module, the
FEANet still surpasses 2.95% mloU score. By applying the proposed
ground truth enhancement method, an improvement of more than
0.5% can be obtained. In order to show our contribution fairly, we eval-
uated each proposed component on this baseline, including
DenseASPOC, foreground module, the enhanced edge module, and
RTSB. The results in Table. 6 show that most of the proposed methods

Table 5
Comparison of human parsing performance with several state-of-the-art methods on val-
idation set of CIHP.

Method Mean Acc. mloU
PGN [30] 64.22 55.80
DeepLabV3 + [11] 65.06 57.13
BraidNet + MaskRCNN [13] - 60.62
Parsing R-CNN [32] - 61.10
FEANet (ours) 74.55 62.48
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Table 6
Ablation Study - Comparison of human parsing performance with different
components.

Method mloU
Analysis on the baseline

CE2P [9] (baseline) 53.10
CE2P [9] with gt enhancement 53.64
CE2P [9] with DenseASPOC 53.16
CE2P [9] with fg 53.12
CE2P [9] with enhanced edge 54.18
CE2P [9] with RTSB 51.11
Analysis on additional information

FEANet w/o fg 56.89
FEANet w/o edge 56.65
FEANet w/o fg and edge 56.80
Analysis on context modules

FEANet with PPM [7] 56.05
FEANet with ASPP [6] 56.07
FEANet with ASPOC [15] 56.47
FEANet with DenseASPP [12] 56.74
DenseASPOC w/o dense connection 56.04
DenseASPOC with dilated rates = {12,24,36} 56.05
DenseASPOC w/o prior convolution 56.74
FEANet w/o gt enhancement 56.26
FEANet w/o RTSB 56.39
FEANet full model 57.06

can independently provide positive gain to the baseline, and the en-
hanced edge module can achieve better performance of 1.08%. Although
the RTSB module cannot improve the baseline performance, when it is
applied to the proposed FEANet, the effect is considerable (+ 0.67%).
We believe that the weighting parameter alpha used in RTSB is a variant
of the entire network architecture.

4.7.2. Analysis on additional information

To evaluate the effectiveness of extra-information assistance we
compare three settings including FEANet without foreground, without
edge and without both of them. It means that there is no gradient back-
ward from £, and £ .qqe respectively in Eq. (7) during training. As
shown in Table. 6, the mloU scores of the three settings drop from
0.17% to 0.41%. More significantly, there are a lot of decrements for
the FEANet without the assistance of edge map since the edge map
can effectively help declare the boundaries among each human part ob-
ject. For foreground information, FEANet hardly helps to further im-
prove the overall performance of human parsing, because it can
provide some clues to reduce the impact of pixels occupied by non-
human object parts.

4.7.3. Analysis on context modules

Apart from additional information, we also provide quantitative re-
sults on FEANet with different context modules including PPM [7],
ASPP [6], ASPOC [15] and DenseASPP [12]. In Table. 6, it is clear that
our FEANet with DenseASPOC module (i.e. full model) obtains the
highest mloU score compared to other context modules. Specifically,
our context module surpasses around 1% mloU score when comparing
with PPM [7] and ASPP [6] module. There are also 0.59% and 0.32%
score enhancement on ASPOC [15] and DenseASPP [12] module. It is re-
alized that the non-local operation can help network to perceive object-
based information from a long range of relationship. In human parsing,
it provides clues from other human part objects rather than just sur-
rounding pixels. In order to compare the performance of DenseASPOC
and ASPOC in [15], we provide the evaluation results of three settings,
such as no dense connections, larger dilated rates and no prior convolu-
tion. As shown in Table. 6, the full model can increase by at least 0.3%
compared to its variants. We observe that, compared with ASPOC [15],
dense connections within DenseASPOC can enhance the network by
more than 1%. This shows that our DenseASPOC module can perform
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more accurate and robust semantic segmentation on human parsing
tasks compared with existing context modules.

4.7.4. FEANet without ground truth enhancement

We replace the ground truth of edge map to the one generated from
CE2P [9] method which computing the correlation of adjacent pixels. As
shown in Table. 6, our algorithm on edge map generation can improve
0.8% compared to the CE2P [9] method. It is beneficial from noise re-
moval on the original label map so that a clean boundary extraction
can be executed. The increment on mloU score can be certified the pos-
itive effect on our ground truth enhancement algorithm on edge map.

4.7.5. FEANet without RTSB

In term of network architecture, we further make enhancement on
the conventional convolution with the 3 x 3 kernel. Regarding to the
sub-block - RTSB, the evaluation results show that the FEANet enquired
with RTSB can get positive gains (0.67%) within the network compared
to original design. It is realized that it can maintain details from previous
layers while extracting deeper features for referencing.

4.8. Qualitative analysis

We also show some examples of edge map and foreground map pre-
dicted from FEANet while proving their effectiveness. Moreover, exper-
iments on label comparison and heat map are qualitatively conducted in
this section as well.

4.8.1. Comparison with the state-of-the-arts

Fig. 5 demonstrates the visualizations on different state-of-the-art
approaches such as MMAN [35], JPPNet [8] and CE2P [9] on LIP [27]
dataset. The descriptions of each method can be referred to Section 2

Input
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Related Work. Overall, our FEANet achieves the best parsing visualiza-
tion performance in the following three circumstances.

Firstly, the FEANet can accurately capture small objects of human
part which are difficult to segment. For instance, some small objects in-
cluding socks in Fig. 5(a), glove in Fig. 5(a)(c) and sunglass in Fig. 5(b)
(c)(d)(f) are correctly segmented in our FEANet module, where the
parsing ability on small objects is aligned with the quantitative experi-
ments as well. It means that our FEANet can obtain good segmentation
performance on human parts with small scale. It is beneficial from the
role of DenseASPOC module contributing hints from long range depen-
dency and comprehensive perception of the surroundings.

Secondly, the FEANet is effective on some easily confusing classes
such as scarf. In Fig. 5(c), we can observe that scarf object is usually
misclassified as upper-cloth or coat since the texture and position are
similar. It is clear that our FEANet can correctly segment the scarf part
on Fig. 5(c) while it achieves the highest 25.22% mloU score compared
to other methods. It is the consequence of object context relationship
from our DenseASPOC module proving non-local dependency with
other objects.

Last but not least, our FEANet performs well in the situation of inten-
sive occlusions and boundaries. In Fig. 5(e)(f), the tennis racket and the
advertisement board overlap some parts of human body which increas-
ing the difficulty of human parsing task. It requires a clear cut from fore-
ground (human part objects) with background (non-human part
objects). The result shows that the FEANet can handle occlusion and
boundary problems very well, where the tennis racket and the board
are perfectly segmented as background class while maintaining an ac-
curate segmentation on upper-clothes, pants and dress, for example.

4.8.2. Visualization on additional information
We provide a qualitative visualization on various dataset regarding
edge map, foreground map and label parsing. In Fig. 1, we demonstrate

C‘] ()
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MMAN  JPPNet CE2P Ours GT MMAN JPPNet CE2P Ours
- Background Hat Glove Sunglass Upper-clothers Dress Coat Socks - Pants g Jumpsuits
B Hair Scarf Skirt [ Face Left-arm Right-arm [l Left-leg I Right-arm I Left-shoe I Right-shoe

Fig. 5. Visual comparison of parsing performance on different state-of-the-art methods.
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Fig. 6. Visual comparison of receptive fields of different well-known context modules. Red marking indicates the reference pixel. The spectrum starts from red to purple representing the

least confidence to the most confidence.

some examples on LIP [27], ATR [ 28], PASCAL-Person-Part [29] and CIHP
[30] dataset. Compared to the ground truths of foreground map and
edge map, our FEANet can perform well in foreground and edge detec-
tion in both single and multiple human parsing. It can separate the
human part objects from the wild scene. With embedding boundary
preserving ability, the FEANet can clearly partition the legs object into
three parts including pants, socks and shoes in LIP [27] dataset; coat
and jumpsuits in ATR [28] dataset; sunglass and hair in CIHP [30]
dataset and upper-arms and lower-arms in PASCAL-Person-Part [29]
dataset.

4.8.3. Visualization on different context modules

To illustrate the effectiveness of the proposed DenseASPOC module,
we provide visualizations on intermediate results of different context
modules since they are all related to atrous convolution. For a fair com-
parison, we simply replace the context module units from DenseASPOC
to others while keeping consistent setting of FEANet during the whole
experiment. Specifically, we collect the final feature block from context
module which containing 512 feature maps in total. To obtain the target
score on a particular class (e.g. scarf in Fig. 6), we forward an input
image multiplied with every normalized feature map. It can produce a
weighted heat map showing confidence scores to a reference pixel.
Moreover, we visualize every feature map computed by atrous convolu-
tion with different dilated rates and the object context pooling module.
The spectrum starts from red to purple representing the least confi-
dence to the most confidence.

In Fig. 6, we show the heat maps produced from each context
module on the targeted scarf class (indicated by a red marking on
the input image). In consequence, our DenseASPOC module can pro-
duce the most accurate distribution on the pixels possibly belonging
to the target class. It leads to an accurate segmentation result. From
the result of atrous convolution with different dilated rates, we can
observe that the densely connected atrous convolution helps locally
capture features from a large region of surrounding pixels to high-
light the possible pixel regions. Meanwhile, from the result of object
context pooling sub-module, the module tries to obtain semantic
meanings from long range dependency by non-local operation. The

10

perceptive field can be expanded to the whole image so as to build
connections with other objects. The result demonstrates that it can
successfully filter out target-class objects such as scarf in this exam-
ple. Therefore, it can prove the ability of feature perception and
global dependency of DenseASPOC.

5. Conclusion

This paper proposes FEANet to solve the problem of ambiguous
small objects, and it performs well under occlusion conditions. We pro-
pose using foreground and edge information to enhance human parsing
performance by improving the ability to globally reduce the impact of
pixels occupied by non-human object parts while preserving the
boundaries of human parts locally. We further studied the method of
extracting semantic features of multi-scale objects by combining geo-
metric context with non-locally object-based context knowledge in a
dense manner which can encapsulate deeper semantic context informa-
tion. Both quantitative and qualitative experimental results have proved
the effectiveness of our foreground-aware module, edge-aware module
and the most important DenseASPOC context module. It can also
achieve the state-of-the-art performance in both single/multi-human
parsing benchmarks which demonstrating the promising robustness
and generality in human parsing task.
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