
1520-9210 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMM.2021.3136085, IEEE
Transactions on Multimedia

IEEE TRANSACTIONS ON MULTIMEDIA 1

Distortion Map-Guided Feature Rectification for
Efficient Video Semantic Segmentation

Jingjing Xiong, Student Member, IEEE, Lai-Man Po, Senior Member, IEEE, Wing-Yin Yu, Student Member, IEEE,
Yuzhi Zhao, Graduate Student Member, IEEE, and Kwok-Wai Cheung, Member, IEEE

Abstract—To leverage the strong cross-frame relations of
videos, many video semantic segmentation methods tend to
explore feature reuse and feature warping based on motion clues.
However, since the video dynamics are too complex to model
accurately, some warped feature values may be invalid. Moreover,
the warping errors can accumulate across frames, thereby
resulting in degraded segmentation performance. To tackle this
problem, we present an efficient distortion map-guided feature
rectification method for video semantic segmentation, specifically
targeting the feature updating and correction on the distorted
regions with unreliable optical flow. The updated features for the
distorted regions are extracted from a light correction network
(CoNet). A distortion map serves as the weighted attention to
guide the feature rectification by aggregating the warped features
and the updated features. The generation of the distortion map is
simple yet effective in predicting the distorted areas in the warped
features, i.e., moving boundaries, thin objects, and occlusions.
In addition, we propose an auxiliary edge-semantics loss to
implement the distorted region supervision with classes. Our
network is trained in an end-to-end manner and highly modular.
Comprehensive experiments on Cityscapes and CamVid datasets
demonstrate that the proposed method has achieved state-of-
the-art performance by weighing accuracy, inference speed, and
temporal consistency on video semantic segmentation.

Index Terms—Video semantic segmentation, feature warping
and correction, deep neural networks, optical flow.

I. INTRODUCTION

SEMANTIC segmentation is a fundamental and core task
in computer vision. Recently, semantic segmentation has

achieved unprecedented progress benefited from the prosperity
of deep convolutional neural networks [1]–[4], transformer
frameworks [5]–[7], etc. With the dramatically accelerating
pace in the development and adoption of new technologies,
single-image semantic segmentation no longer meets the re-
quirements for some emerging applications. For instance,
the rapid advancements and broad prospects of robotics,
autonomous driving, and video surveillance technology have a
stronger dependence on video semantic segmentation. Videos
involve a much larger volume of data and rich spatial-temporal
information [8]–[12]. Video semantic segmentation aims to
assign dense class labels for each frame in a video. Moreover,
the real-time applications put forward higher demands of
efficiency on video semantic segmentation tasks.
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Fig. 1. Comparison of the accuracy and time of recent video semantic seg-
mentation methods under different keyframe intervals {3, 5, 9} on Cityscapes
dataset. The pentagrams indicate our methods with various keyframe intervals.
Data from Table I.

A comparison of main-stream video semantic segmentation
methods is shown in Fig. 1. In general, the most straight-
forward way to perform video semantic segmentation is to
extend the image segmentation models to video segmentation
directly, treating videos as uncorrelated frames and segmenting
the videos in a frame-by-frame fashion, as shown in Fig. 2
(a). However, there exist two main problems: 1) It cannot
leverage the spatial continuity and temporal information in
consecutive frames, which produce temporally inconsistent
segmentation results on video; 2) The consecutive frames of
a video share a large portion of similar spatial information.
The image semantic segmentation models completely ignore
the spatial consistency in videos and segment each frame
individually, leading to the heavy and redundant computation.
To take advantage of the spatial and temporal information
inside videos, Fig. 2 (b) assumed that the high-level features
of the keyframe can be reused and warped to generate the
features for the next consecutive non-keyframes [13]–[15].
The feature warping process relies heavily on the estimation
of motion clues, such as motion vector, optical flow, etc.
However, it remains a challenging problem for authentic scene
dynamics estimation. The invalid optical flow in the regions
like moving thin objects, moving boundaries, occlusions may
cause unsatisfactory segmentation results [13], [14], [16]–[19],
which are illustrated in Fig. 3. The subsequent works follow
the idea of feature warping and try to design a correction
module to revise the warped features in the distorted areas
[20]–[23], as shown in Fig. 2 (c). In addition, Fig. 2 (d) directly
propagated the labels [24], [25], and/or correct the wrongly
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Fig. 2. Typical architectures in video semantic segmentation. (a) per-frame based video semantic segmentation. (b) feature warping-based video semantic
segmentation. (c) feature warping and correction-based video semantic segmentation. (d) label warping and correction-based video semantic segmentation.
Nfeat, Ntask represent the network for feature extraction and the task network for segmentation result, respectively. Nk

feat, N i
feat represent the network

for key-frame feature extraction and the network for non-keyframe feature extraction, respectively.

Fig. 3. Typical problems of feature warping methods caused by the inaccurate
optical flow estimation in the regions of moving thin objects, moving
boundaries, occlusions. “PEV” in the last column donates partial enlarged
views of the images inside the yellow rectangles in T + 9 and GT (T + 9).

assigned labels through a correction module [26]–[28].
In the feature correction process, a distortion map plays a

key role in showing the distorted areas where the estimation
of optical flow may be imprecise. Generally, authentic optical
flow predictions on moving boundaries, thin objects, and oc-
clusions are difficult, leading to the inaccurate warped features
in these distorted regions. A discriminative distortion map can
distinguish the distortion areas from other regions and merely
guide the feature rectification on the distorted regions. For the
distortion map estimation in previous works [22], [28], [29],
Paul et al. [28] computed a probability map that represents
the forward-backward inconsistencies of the optical flow as
the distortion map. This distortion map is coarse since it only
leverages the difference between the forward and backward
propagated labels. Ding et al. [29] estimated two occlusion
masks from a non-occluded flow branch and the segmentation
maps inconsistency, and generated an error mask from the
occlusion masks. This method can detect the photometric

inconsistency between adjacent video frames, yet suffers from
expensive computation. Zhuang et al. [22] proposed a separate
distortion map network to predict the distorted areas of prop-
agated features. However, the distortion map network is pre-
trained before the video semantic segmentation network, and
its parameters are fixed during the video segmentation training
procedure, which decreases the flexibility and accuracy of the
distortion map.

To improve the quality and save the computation of the
distortion map, we present an efficient way to generate a
trainable distortion map in a coarse-to-fine manner. Firstly,
a coarse distortion map detecting the occlusions and rough
moving boundaries is produced by the label inconsistency
after warping. Next, an edge map that locates the boundaries
and thin objects is learned from a lightweight edge & thin
object perceiving module. Finally, the coarse distortion map
is linearly combined with the edge map to generate a fine
distortion map. In this way, the fine distortion map contains
the information in both maps, and thus can distinguish the
occlusions, moving boundaries, and thin objects from other
regions. The aforementioned processes are extremely fast to
compute, and the distortion map is updated and optimized
during the video segmentation training process.

The proposed video semantic segmentation method is built
upon the structure of Fig. 2 (c) - feature warping and cor-
rection. The architecture overview is illustrated in Fig. 4. For
a given video sequence, the frames are divided into key and
non-keyframes. A backbone network is employed to segment
the keyframe and produce its feature map. Subsequently, the
keyframe features are warped to the next consecutive non-
keyframes based on the optical flow estimation. To obtain
more accurate non-keyframe features, the core idea is to
update and correct the warped features in unreliable regions
while preserving the warped features for trustworthy regions.
This is achieved via updated feature generation and distortion
map-guided feature rectification. To be specific, a correction
network CoNet is designed to extract the updated feature
maps with higher attention on the distorted regions. Thereafter
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a distortion map-guided feature rectification is developed to
fuse the warped and the updated features and finally generate
the non-keyframe prediction. The overall video segmentation
procedure is summarized in Algorithm 1. We summarize the
main contributions as follows:

1) We propose a distortion map-guided feature rectification
method for efficient video semantic segmentation, in which a
coarse-to-fine distortion map is generated to locate the regions
with unreliable optical flow.

2) We propose an extremely lightweight Correction Network
to focus on the feature extraction on distorted regions, together
with an edge & thin object perceiving module to output an
edge map to detect the boundaries and thin objects.

3) We define an edge-semantics loss to implement distorted
region supervision with classes, strengthening the segmenta-
tion on distorted regions with correct label information.

4) We experimentally evaluate the effectiveness of the
proposed method. The results on Cityscapes and CamVid
demonstrate the improved segmentation accuracy and temporal
consistency of our method compared with previous state-of-
the-art methods.

II. RELATED WORKS

A. Video Cross-frame Relations
Compared to a single image, a video contains complex

spatio-temporal dependence and tight cross-frame relations.
Previous works can be summarized into three streams accord-
ing to the way of modeling the cross-frame relations. The
first one employs the motion clues between adjacent frames to
encode the temporal consistency. Some works use a pretrained
flow network to estimate the optical flow [13], [20]–[22],
[26], [28]–[34], while some works utilize the block motion
vectors presented in compressed video [14], [15], [23], [35]–
[37]. The computation cost of extracting the motion vectors
in the second option is cheap since the vectors already exist
in a given compressed video. However, the motion vectors are
coarse-grained, less precise than optical flow, and not trainable.
Recently, convolutional neural network-based optical flow
methods provide an effective way for the computation of flow
field. Popular flow networks include FlowNet series [38], [39],
PWC-Net [40], etc. The second line of works utilizes a 3D
convolutional neural network (3D CNN) [8], [12], [41], [42]
or a Recurrent neural network (RNN) [9], [43], [44] to learn
the spatio-temporal dependencies directly. Moniruzzaman et
al. [42] utilized 3D CNN to extract the feature maps from a
video clip and learned discriminative spatial, temporal, and
channel-wise features by feature representation generation.
Qiu et al. [8] learned the temporal dependencies through
3D FCN on voxel level and employs Convolutional LSTM
(ConvLSTM) on the sequential frames stream to exploit long-
term temporal information. The last line of works aggregates
representation of long-range temporal relations based on the
attention mechanism [45]–[48]. Paul et al. [47] designed a
memory module to aggregate semantic information from three
past frames in the form of a feature maps buffer. Hu et al.
[45] constructed an attention propagation module based on
the non-local attention mechanism to reassemble features from
previous frames.

B. Feature Propagation and Correction

Since the image content of consecutive frames in a video
varies slowly, the high-level semantics evolve slightly across
frames. Many works reuse the high-level features of a
keyframe and propagate the keyframe features to the next con-
secutive non-keyframes. Li et al. [13] proposed deep feature
flow to achieve fast video semantic segmentation, which is the
first work to warp the previous frame features with bilinear
interpolation under the guidance of the optical flow informa-
tion. To further rectify the wrongly warped features due to
the impreciseness of motion clues, the later works design the
feature rectification module to update and correct the wrong
warped features [15], [20]–[23], [32], [36]. Generally, the
design of feature correction follows the idea of constructing
another branch of network to extract the updated features of
non-keyframes independently, then merge the features with
the warped features through feature fusion. Jain et al. [21]
and Gadde et al. [20] adopted simple ways to merge the
updated features with the warped features, such as a fusion
layer or linear combination. Feng et al. [15] proposed a context
feature rectification module and a residual-guided attention
module as correction modules to alleviate the non-rigid object
deformation and error accumulation during feature warping.
Xu et al. [32] and Feng et al. [36] divided the non-keyframe
into several small frame regions and operate the frame regions
independently. The frame region is processed by either a
simple warping operation or a complex segmentation module
according to the difference between a threshold and a score
of the small frame region.

C. Keyframes Scheduling Strategy

Video semantic segmentation methods rely heavily on
keyframes scheduling strategies. Generally, the segmentation
processes for keyframes and non-keyframes are different. The
computation cost of keyframes is higher than that of non-
keyframes. Two keyframe scheduling strategies commonly
used in video semantic segmentation include fixed keyframe
selection [29], [35], [45], [47], [48], and adaptive keyframe
selection [32], [34], [36], [49], [50]. In fixed keyframe se-
lection, we choose a keyframe for every fixed number of
a frame interval. For instance, given a fixed interval of 5,
there will be one keyframe out of 5 consecutive frames.
This kind of strategy is super-efficient since there is no
time consumption required for distinguishing the keyframes.
However, it sacrifices flexibility and customizability to some
extent. Adaptive keyframe selection can tackle this problem by
adaptively adjusting the update period of the keyframes. Xu et
al. [32] proposed an adaptive keyframe scheduling policy by
introducing a decision network to determine whether to send
the image to the segmentation path or the spatial warping path
according to a metric called expected confidence score. Li et
al. [49] leveraged the low-level features to predict a deviation
and set the keyframe by comparing the deviation value with a
threshold. The adaptive strategy is more flexible than the fixed
one, but it demands additional computation which damages
the efficient video semantic segmentation. In this work, we
employ the simple fixed keyframe interval strategy.
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Fig. 4. An overview of the architecture of the proposed method, which is built upon the structure of Fig. 2 (c). Given a video, the video frames are divided
into keyframes and non-keyframes. The segmentation prediction of the keyframe is achieved by the backbone network. The segmentation prediction of the
non-keyframe is achieved by the proposed distortion map-guided feature rectification method.

Algorithm 1 Video semantic segmentation procedure
Input: Video frames {Ii}, keyframe interval n
Output: Frame segmentations {Si}

1: for frame Ii in {Ii} do
2: if Ii is keyframe, then
3: k = i
4: F b

k = Nbackb(Ik) . keyframe features
5: Pk = Ntask(F

b
k) . keyframe prediction

6: Si = Fup(Pk) . keyframe segmentation
7: else
8: Fw

k→i =Warp(F b
k , Nflow(Ik, Ii)) . warping

9: Fu
i = Nupda (Ii, F

w
k→i) . updated features

10: E2
i , E

3
i , E

4
i = Nupda−enc (Ii)

. features from Nupda encoder
11: Pw

k→i = Ntask(F
w
k→i) . warped prediction

12: M c
k→i = Diff(Pw

k→i, Pk)
. coarse distortion map

13: Me
i = Nedge

(
E2

i , E
3
i , E

4
i

)
. edge map

14: Mf
k→i = wfM

c

k→i
+ (1− wf )M

e
i

. fine distortion map
15: Fm

i =
(
1−Mf

k→i

)
⊗ Fw

k→i +Mf
k→i ⊗ Fu

i

. merged features
16: Pi = Ntask(F

m
i ) . non-keyframe prediction

17: Si = Fup(Pi) . non-keyframe segmentation
18: F b

k ← Fw
k→i . iteration

19: Pk ← Pi . iteration
20: Ik ← Ii . iteration
21: end if
22: end for

III. METHODOLOGY

A. Backbone Network

The keyframe Ik ∈ RW×H×3 is fed into a backbone
network Nbackb to generate the feature maps of the keyframe
F b
k . Then, the keyframe prediction is obtained through a

task network Ntask. The processes can be written as F b
k =

Nbackb(Ik)∈ RW/4×H/4×C and Pk = Ntask(F
b
k). The fi-

nal segmentation map Sk is obtained by upsampling Pk to
match the spatial dimensionality of the input frame given as
Sk = Fup(Pk), where Fup is the bilinear upsampling. In this
work, Ntask only contains an argmax operator to generate
the prediction map from the features.

B. Feature Warping Representations

For the segmentation of non-keyframes, we follow the
process of feature warping and correction. The “Simple”
architecture from the FlowNet2 [39] is modified to obtain the
optical flow field between Ik ∈ RW×H×3 and Ii ∈ RW×H×3.
Take Ii as the next frame of the keyframe as an example,
which means the index i = k+1. It is easy to extend to other
intermediate frames (the frames between the keyframe and the
next keyframe) by iteratively setting k ← i and i ← i + 1.
The revised FlowNet2 Nflow concatenates the pairs of frames
Ik and Ii as the input and computes a two-dimensional flow
field Oi→k = Nflow(Ik, Ii)∈ RW/4×H/4×2. The flow field is
a quarter of the resolution of the inputs to keep the runtime
small. The warped features Fw

k→i is spatially transformed from
the keyframe features F b

k with bilinear interpolation:

Fw
k→i =Warp(F b

k , Nflow(Ik, Ii)). (1)
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Fig. 5. The architecture of (a) the updating network Nupda, (b) PPM
and (c) FFM-1. GAP: Global Average Pooling. FC: Fully Convolutional
layer followed by a batch-normalization layer and a ReLU layer. LT: Linear
Transformation. 1 × 1 or 3 × 3 Conv: 1 × 1 or 3 × 3 convolution layer
followed by a batch-normalization layer and a ReLU layer. C is the total
number of classes of interest, e.g., C = 19 in Cityscapes dataset and C = 11
in CamVid dataset.

C. Updated feature generation

We construct a lightweight Correction Network (CoNet),
which provides additional feature information to revise the
warped features in the distorted regions. It contains an up-
dating network branch Nupda and an edge & thin object
perceiving module branch Nedge. Details of the edge branch
will be presented in the next subsection. The framework
of Nupda is an encoder-decoder network designed for fast
semantic feature extraction, which is illustrated in Fig. 5.
The encoder of Nupda comprises 8 layers with 5 down-
sampling operations. Thereafter, a spatial Pyramid Pooling
Module (PPM) is employed to enlarge the receptive field
and decrease the channel number. The decoder involves three
consecutive Feature Fusion Modules (FFM), assigning soft
channel attention to the features with diverse resolutions. The
output resolution of the decoder is 1/4 of the original image
resolution. Since the warped features Fw

k→i contains useful
feature information from the keyframe, we also concatenate
Fw
k→i to the decoder and obtain the updated features of the

current frame Fu
i . The whole process can be written as:

Fu
i = Nupda (Ii, F

w
k→i) . (2)

D. Distortion map-guided feature rectification

The warped features and the updated features have different
properties, i.e., the warped features have stronger regional
continuity, while the updated features on distorted regions are
more accurate. To leverage the various information in both

warped features and updated features, we learn a coarse-to-
fine distortion map to distinguish the distorted regions in the
warped features, and correct the unreliable warped features
with the updated features. The distorted areas in this map are
the combinations of occlusions, thin objects, and boundaries.
Finally, the distortion map serves as weighted attention to
guide the feature rectification. The whole process contains four
steps:

1) Coarse distortion map generation: A coarse distortion
map detecting the occlusion regions as well as rough moving
boundaries is derived from comparing the keyframe prediction
Pk with the warped prediction Pw

k→i. P
w
k→i is obtained by

feeding the warped features Fw
k→i to the task network Ntask

given as Pw
k→i = Ntask(F

w
k→i). For the pixel (x, y) where

Pw
k→i(x, y) and Pk(x, y) are different, the prediction after the

warping process is inconsistent with the keyframe prediction.
In consequence, this pixel position may locate the occlusions
or moving boundaries. We use Diff to donate the label
difference between Pw

k→i and Pk, then the process to compute
the coarse distortion map M c

k→i can be represented as Eq. (3).
The coarse distortion map is a binary map, which means the
value in this map is either 0 or 1.

M c
k→i(x, y) = Diff(Pw

k→i(x, y), Pk(x, y))

=

{
1; ifPw

k→i (x, y) 6= Pk(x, y)
0; otherwise

.
(3)

2) Edge map generation: The edge map showing the
regions of edge and thin objects is generated from an edge &
thin object perceiving module Nedge, which is modified from
CE2P [51]. This module aims at learning the representation
of boundaries and thin objects from the current non-keyframe.
In the labeled classes, we define “pole”, “pedestrian” and
“bicyclist” as thin object classes. The inputs of the edge
perceiving module are E2

i , E3
i , and E4

i generated from the
second, third and fourth block of Nupda encoder (as shown
in Fig. 5). Three 1 × 1 convolution layers and a shared
3 × 3 convolution are conducted to the inputs to generate
three 2-channel score maps. Thereafter, a 1 × 1 convolution
is performed to the upsampled and concatenated score maps
to obtain a fused score map. Finally, a Sigmoid layer is
employed to the fused score map to generate the edge & thin
object map, simplified as edge map Me

i . The aforementioned
processes can be written as Me

i = Nedge

(
E2

i , E
3
i , E

4
i

)
. The

range of the edge map is [0, 1].
3) Fine distortion map generation: The fine distortion map

Mf
k→i is obtained by a linear combination of coarse distortion

map M c
k→i and edge map Me

i given as:

Mf
k→i = wfM

c
k→i + (1− wf )M

e
i , (4)

where wf ∈ [0, 1] is the weight to fuse the coarse distortion
map M c

k→i and the edge map Me
i . We set wf to 0.5 in the

proposed model. The range of the fine distortion map Mf
k→i

is [0, 1]. The larger the value in the fine distortion map, the
more severe the distortion at that location. Fig. 6 presents
an example to visualize these three types of maps. It can be
observed that the fine distortion map highlights the regions
of occlusions (behind the yellow car), moving boundaries,
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Fig. 6. An example to show different types of maps over time: coarse
distortion map Mc

k→i, edge map Me
i and fine distortion map Mf

k→i. The
frame indexes of Ii are k + 1, k + 3, k + 5, k + 7 and k + 9 from the top
to the bottom, where k is the index of the keyframe. The last row shows the
partial enlarged views of the images inside the yellow rectangles.
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Fig. 7. Illustration of (a) linear combination of the coarse distortion map
Mc

k→i and edge map Me
i (b) distortion map-guided feature fusion of the

warped features Fw
k→i and the updated features Fu

i by the sum of Hadamard
products. The four loss items: warp loss Lw , semantic loss Ls, edge loss Le,
and edge-semantics loss Les are displayed in the orange rectangles.

and thin objects (poles). The linear combination of the coarse
distortion map M c

k→i and edge map Me
i to generate the fine

distortion map is shown in Fig. 7 (a).
4) Feature fusion: The fine distortion map Mf

k→i is
adopted as weighted attention to aggregate the warped features
Fw
k→i and the updated features Fu

i . The merged feature Fm
i

is computed as the sum of Hadamard products, which can be
represented as:

Fm
i =

(
1−Mf

k→i

)
⊗ Fw

k→i +Mf
k→i ⊗ F

u
i , (5)

where ⊗ represents the Hadamard product. The merged
features adaptively combine the information in the warped

features and the updated features according to the values of
Mf

k→i. For a pixel I(x, y), if Mf
k→i(x, y) is close to 1, it indi-

cates this position has serious distortion occurred. The warped
features are inaccurate, and the merged features Fm

i (x, y) use
the values in the updated features as an alternative. On the
contrary, if Mf

k→i(x, y) is close to 0, it implies that the optical
flow estimation in this region is trustworthy. The merged
features Fm

i (x, y) believe the feature warping process and
keep the values in the warped features. The illustration of the
feature fusion process is shown in Fig. 7 (b). Benefiting from
the design of feature information compensation, the warped
features for the authentic regions are preserved, while the
warped features on the distorted regions are rectified.

The final segmentation map of the current non-keyframe Si

is obtained by feeding the merged features Fm
i to Ntask given

as Pi = Ntask(F
m
i ), and upsampling Pi to match the spatial

dimensionality of input frame given as Si = Fup(Pi).

E. Objective Function

The objective function for the proposed model is presented
in Fig. 7. In particular, the objective function contains four
kinds of losses: warp loss (Lw), semantic loss (Ls), edge loss
(Le) and edge-semantics loss (Les), which is given by:

L = λwLw + λsLs + λeLe + λesLes, (6)

where λw, λs, λe and λes are the weights to balance the warp
loss, semantic loss, edge loss and edge-semantics loss. Lw, Ls

and Les are implemented with the cross-entropy loss function.
Le is implemented with weighted cross-entropy loss function.
Lw works on the warped features Fw

k→i for improving the
quality of optical flow. Ls works on the merged features Fm

i

for enhancing the segmentation ability of the whole model.
Le works on the edge map Me

i to improve the performance
of segmenting edge and thin objects. Les works on the edge-
semantics features F es

i , which is obtained by multiplying the
updated features Fu

i with the fine distortion map Mf
k→i given

as F es
i = Fu

i ⊗M
f
k→i.

The edge-semantics loss is to implement the distorted region
supervision with classes on F es

i and strengthen the segmen-
tation of distorted regions with correct label information. The
ground truth prediction of Ii is obtained by feeding the frame
Ii to the backbone network directly. This pseudo label P gt

i can
help CoNet learn faster and preserve the temporal consistent
prediction between Ik and Ii. The true ground truth GT i is
used to generate the ground truth for the edge map Mgt

i . The
fine distortion map is binary classified through an argmax
operation and is multiplied with P gt

i to generate the edge-
semantics ground truth P es gt

i given as:

P es gt
i = argmax(M

f
k→i)⊗ P

gt
i . (7)

IV. EXPERIMENT

A. Implementation Details

Datasets. We use Cityscapes [52] and CamVid [53] to
evaluate the performance of the proposed method. Cityscapes
is a large-scale dataset for complex urban scene understanding.
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It consists of 30-frame snippets shot at 17 fps. The image
spatial resolution is 1024 × 2048. This dataset is divided
into train, val, and test subsets with 2975, 500, and 1525
video clips. Ground truth labels are only provided for the 20-
th frame in each train or val video clip. Following similar
protocols of previous works [13], [15], [32], [49], we train
the model on the train split and report the results on the
val split. CamVid is another urban street scene dataset for
video semantic segmentation, but the data is much less than
Cityscapes. Moreover, the video quality and the label quality
are coarser than Cityscapes, making it a challenging dataset.
CamVid contains 10 minutes of footage captured at 30 fps. The
image spatial resolution is 960 × 720. Following the standard
train-test split of [54], we divide this dataset into train and test
subsets with 468 and 233 video clips. Ground truth labels are
only provided for the 30-th frame in each train or test video
clip.

Training samples. For video semantic segmentation, the
labeled images of the video dataset are limited. Hence, we
enrich the diversity of training samples through multiple
sampling. In this work, a training sample to our model is
a pair of images (Ik, Ii), where Ik is randomly selected
from the nearby video clip and Ii is the video frame with
the segmentation ground truth. The interval between Ik and Ii
is set to interval = i− k ∈ [−4, 5].

Training details. The proposed method consists of four
sub-networks which are Nbackb, Nflow, Nupda and Nedge.
The parameters of Nbackb are fixed during training. Nflow

is pretrained on the synthetic Flying Chairs dataset [38] and
then jointly trained with the randomly initialized CoNet. The
backbone network Nbackb is opened to an arbitrary semantic
segmentation network. In this work, we employ CSRNet [55]
as the backbone network of the keyframe because of its good
trade-off between segmentation accuracy and inference speed.
Specifically, CSRNet achieves a mIoU score of 76.49% on
Cityscapes with a speed of 55.0 (ms) per frame, and 73.68%
on CamVid with a speed of 43.2 (ms) per frame. For each step
of training, we employ the Adam [56] optimizer with the initial
learning rate 1e−4 in both dataset. The batch size is set to 16.
We decay the learning rate with cosine annealing strategy [57]
to the minimum value of 1e− 6 in the last epoch. We employ
random horizontal flip and random crop the image to a fixed
size for training. We adopt the cropped resolution of 512 ×
1024 for Cityscapes and 480 × 720 for CamVid. The numbers
of training epochs for both Cityscapes and CamVid are 100
epochs. We conducted the experiments based on PyTorch 1.5.0
framework with two NVIDIA GeForce GTX 1080 Ti under
CUDA 10.2 and cuDNN 7.6.5. Codes and models are available
at https://github.com/Mayy1994/EVSS.

B. Evaluation metrics

The evaluation metrics in this work are segmentation
accuracy, inference speed, and temporal consistency. For
the evaluation of segmentation accuracy, the standard mean
interaction-over-union (mIoU) is adopted. We select an oper-
ational keyframe interval k ∈ [1, 9] and compute the mIoU
of different intervals. The keyframe interval determines the

distance between the keyframe and the labeled frame. For
instance, if the 20-th frame is the labeled frame and k = 3,
then 17-th frame is set to the keyframe and this keyframe is
segmented by the backbone network Nbackb. Afterward, we
propagate and rectify the features to the 18-th, 19-th, 20-th
frames and compute the IoU between the 20-th frame and the
ground truth. Similarly, if the keyframe interval k is set to
9, then the 11-th frame is chosen as the keyframe. For the
measurement of inference speed, since the computation costs
for the keyframes and the non-keyframes are unbalanced, the
average segmentation time from the keyframe to the labeled
frame is employed to evaluate inference speed.

We evaluate the temporal consistency of the proposed video
semantic segmentation model by computing the mIoU score
between the predicted segmentation map with the warped seg-
mentation map, following the evaluation methodology in [58],
[59]. For Cityscapes dataset, 100 video sequences randomly
sampled from the validation set are employed to evaluate the
temporal stability. For CamVid dataset, all the sequences in
“Seq05VD” are used for temporal stability evaluation. The
temporal consistency (TC) is computed as:

TC =
1

N

N∑
s=1

Pw
s ∩ Ps

Pw
s ∪ Ps

, (8)

where Pw
s = {Pw

1→2, . . . , P
w
T−1→T } and Ps = {P2, . . . , PT }

are the set of the warped prediction and final prediction. T
represents the total frames in a video sequence and N is the
number of the video sequences evaluated.

C. Performance

To evaluate the performance of the proposed model on video
semantic segmentation, we compare the proposed method with
state-of-the-art video segmentation methods, including TDNet
[45], LMANet [47], GSVNet [33], DFF [13], GRFP [26],
Accel [21], DDWSF [30], BMC [23], BDNet [35], FSS [14],
DAFC [22], TWNet [15], TapLab [36]. All the measurements
of the proposed method are conducted under the original
resolution of Cityscapes and CamVid.

1) Segmentation accuracy: The comparisons of the mIoU
accuracy on Cityscapes and CamVid with recent video seman-
tic segmentation methods under various keyframe intervals {3,
5, 9} are reported in the third column of Table I and Table II.
The proposed method achieves 75.92, 75.38, and 73.71 mIoU
on Cityscapes dataset with 3, 5, and 9 keyframe intervals.
On CamVid dataset, the proposed method outperforms the
previous methods by a large margin, attaining 73.51, 72.89,
and 71.26 mIoU with 3, 5, and 9 keyframe intervals. The
accuracy vs. inference speed plot on Cityscapes is shown
in Fig. 1. We also illustrate the comparison of accuracy vs.
keyframe interval (from 1 to 9) on Cityscapes dataset with
several optical flow-based warping methods, including Accel
series [21], TWNet [15], FSS [14], DFF [13] in Fig. 8.
As shown in this figure, the proposed method gets obvious
accuracy improvements across different keyframe intervals.
As the keyframe interval increases, the segmentation accu-
racy shows a downward trend. Among these methods, the
segmentation accuracy of DFF and FSS methods drops rapidly
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TABLE I
COMPARISON OF ACCURACY AND INFERENCE TIME ON CITYSCAPES.

TABLE ORDERED BY PUBLISHED YEAR. “-” INDICATES THAT THE
CORRESPONDING RESULT IS NOT PROVIDED BY THE METHOD. NUMBERS
IN RED AND BLUE REPRESENT THE BEST AND SECOND-BEST RESULTS.

Method Platform
Accuracy Time Time-norm

(mIoU, %) ↑ (ms/frame) ↓ (ms/frame) ↓
Keyframe Interval: 3

FSS [14] Tesla K80 72.5 294.1 232.3
TDNet [45] Titan XP 75 21 23.5

DDWSF [30] Titan XP 74.6 400 448
TapLab [36] GTX 1080 Ti 72.5 14.9 14.9
TWNet [15] GTX 1080 Ti 73.1 - -

LMANet [47] RTX 2080Ti 73.37 142.8 195.6
GSVNet [33] GTX 1080Ti 72.6 8 8

Proposed GTX 1080Ti 75.92 45.5 45.5
Keyframe Interval: 5

DFF [13] Tesla K40 68.7 250 110
GRFP [26] Titan X 69.4 470 286.7
FSS [14] Tesla K80 70.5 204 161.2

Accel [21] Tesla K80 74.2 670 529.3
DDWSF [30] Titan XP 74.1 340 380.8

BMC [23] - 73.1 72.5 72.5
TWNet [15] GTX 1080 Ti 72.8 - -
BDNet [35] Tesla K80 70.2 290 229.1

Proposed GTX 1080 Ti 75.38 41.8 41.8
Keyframe Interval: 9

FSS [14] Tesla K80 66.9 144.9 114.5
DAFC [22] GTX 1080 Ti 72.99 74.5 74.5
TWNet [15] GTX 1080 Ti 72 - -
TapLab [36] GTX 1080 Ti 71.0 10.7 10.7

Proposed GTX 1080 Ti 73.71 38.7 38.7

Note: Some methods report the performance on a particular keyframe
interval, while some report the performance on several intervals.

Fig. 8. Comparison of accuracy vs. keyframe interval on Cityscapes dataset
with several feature warping (and correction) methods, including Accel series
[21], TWNet [15], FSS [14], GRFP [26], and DFF [13].

as the keyframe increases. The reason is that DFF and FSS
simply warp the features from keyframe to consecutive non-
keyframes without any feature correction operations, resulting
in serious accumulative warping errors and poor segmentation
performance over time.

2) Inference speed: The comparisons of inference speed
with recent methods on Cityscapes and CamVid are reported
in the last two columns of Table I and Table II. Since the
experimental environments of different methods vary a lot,
we normalize the time value as the “Time-norm” based on the

TABLE II
COMPARISON OF ACCURACY AND INFERENCE TIME ON CAMVID. TABLE

ORDERED BY PUBLISHED YEAR. “-” INDICATES THAT THE
CORRESPONDING RESULT IS NOT PROVIDED BY THE METHOD. NUMBERS
IN RED AND BLUE REPRESENT THE BEST AND SECOND-BEST RESULTS.

Method Platform
Accuracy Time Time-norm

(mIoU, %) ↑ (ms/frame) ↓ (ms/frame) ↓
Keyframe Interval: 3

FSS [14] Tesla K80 68.7 109.9 86.8
TDNet [45] Titan XP 72.6 40 44.8

GSVNet [33] GTX 1080Ti 64.8 4 4
Proposed GTX 1080Ti 73.51 19.2 19.2

Keyframe Interval: 5
DFF [13] Tesla K40 66 102 44.9
FSS [14] Tesla K80 68.4 76.3 60.3

Accel [21] Tesla K80 67.7 239 188.8
Proposed GTX 1080 Ti 72.89 18.7 18.7

Keyframe Interval: 9
FSS [14] Tesla K80 67 52.4 41.4

DAFC [22] GTX 1080 Ti 69.53 25.5 25.5
Proposed GTX 1080 Ti 71.26 18.1 18.1

Note: Some methods report the performance on a particular keyframe
interval, while some report the performance on several intervals.

Fig. 9. Runtime and FLOPs comparison. Experiments carried on Cityscapes
with spatial resolution 1024 × 2048.

GPU types for a fair comparison. Following the previous work
[15], [60], the scaling factors are: 1 for GTX 1080 Ti, 0.44
for Tesla K40, 0.79 for Tesla K80, 0.61 For Titan X, 1.12 for
Titan XP, and 1.37 for RTX 2080Ti. The inference time of the
proposed method gradually decreases as the keyframe interval
increases due to the time imbalance between segmenting
keyframe and non-keyframes. The inference time to segment a
non-keyframe is much less than segmenting a keyframe. The
proposed method costs 45.5, 41.8, and 38.7 (ms) on Cityscapes
dataset with 3, 5, and 9 keyframe intervals, respectively. On
CamVid dataset, the proposed method spends 19.2, 18.7, and
18.1 (ms) with 3, 5, and 9 keyframe intervals, respectively.
Compared with the GSVNet [33] and TapLab [36] which
achieve fast inference time, the proposed method gains a
decent trade-off between the accuracy and speed when the
keyframe interval varies.

In addition to analyzing the overall inference time of
video segmentation with various keyframe intervals, we also
compute the average running time and floating point oper-
ations (FLOPs) of different components when segmenting
video frames on Cityscapes dataset, as shown in Fig. 9.
The experiment is conducted on a Ubuntu 18.04 LTS PC
with Intel(R) Core(TM) i9-7900X CPU @ 3.30GHz CPU
and a single GTX 1080 Ti GPU. In the proposed model,
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Fig. 10. Qualitative outputs on Cityscapes dataset. “PEV” donates partial enlarged views of the images inside the yellow rectangles. We compare the proposed
method with state-of-the-art methods, including DFF [13], TapLab [36], GRFP [26], DAFC [22]. The images in Column 3-8 are the segmentation results
inside the yellow rectangles with different methods.

TABLE III
COMPARISON OF TEMPORAL CONSISTENCY (%) ON CITYSCAPES AND
CAMVID. TABLE ORDERED BY PUBLISHED YEAR. “-” INDICATES THAT

THE CORRESPONDING RESULT IS NOT PROVIDED BY THE METHOD.
NUMBERS IN RED REPRESENT THE BEST RESULTS.

Method Backbone
Dataset

Cityscapes CamVid
Per-frame inference
MobileNetV2 [61] MobileNetV2 68.4 76.8

PSPNet [62] ResNet101 69.7 77.1
PSPNet18 [62] ResNet18 68.5 -
SKD-MV2 [63] MobileNetV2 68.2 -
SKD-R18 [63] ResNet18 67.6 75.4

HRNet-w18 [64] HRNet 69.1 -
PFI [58] MobileNetV2 69.9 77.9

Multi-frame inference
CC [65] VGG16 71.2 -
DFF [13] ResNet101 71.4 78.0
Accel [21] ResNet101 70.3 76.2
DAFC [22] DeepLabV3+ 72.8 78.1
Proposed ResNet18 75.3 81.0

we compute the runtime of (1) “Backbone” - the backbone
network Nbackb to segment the keyframe. (2) “FlowNet” -
the optical flow network Nflow to compute the flow field
between the keyframe and the next frame. (3) “Warping” - the
feature warping operation Warp to propagate the feature from
the keyframe to the next frame. (4) “CoNet” - the updating
network Nupda to compute the updated features and an edge
& thin object perceiving module Nedge to generate the edge
map. (5) “Fusion” - the feature fusion process to obtain the
merged features and preform non-keyframe segmentation. For

(a)                                                                                                 (b)

Fig. 11. The percentage of corrected labels with different keyframe intervals
on (a) Cityscapes and (b) CamVid.

Cityscapes dataset, the backbone network spends 55 (ms) on
segmenting the keyframe, which is the most expensive part. It
is reasonable since the keyframe segmentation provides a high-
quality feature reference to the following frames. The time
of segmenting a non-keyframe is the runtime summation of
FlowNet, Warping, CoNet, and Fusion. It takes nearly 35 (ms)
on average for a non-keyframe segmentation. The inference
time can be further decreased when a lighter flow network is
employed. Ideally, the relationship between the overall per-
frame segmentation time t and the keyframe interval k is
t = (55 + 35k)/(k + 1) = 35 + 20/(k + 1). The range of
t is [55, 35) (ms). As the keyframe interval k increases, the
average running time gets closer to 35 (ms), which is the time
of segmenting a non-keyframe. The qualitative results of our
framework on samples of Cityscapes are shown in Fig. 10.
The proposed method can achieve more satisfactory results
on occlusions, moving boundaries, and thin objects compared
with other methods.
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3) Temporal Consistency: The comparison of temporal
consistency with previous methods on Cityscapes and CamVid
is reported in Table III. The methods can be divided into
per-frame inference methods, including MobileNetV2 [61],
PSPNet [62], SKD [63], HRNet-w18 [64], PFI [58] and multi-
frame inference methods, including CC [65], DFF [13], Accel
[21], DAFC [22]. Per-frame inference methods are inferred
on each frame independently, while multi-frame inference
methods exploit feature warping to infer on multi frames. From
Table III, per-frame inference methods produce lower temporal
consistency results than multi-frame inference methods due to
the abandonment of video temporal information. The proposed
method outperforms the previous multi-frame inference meth-
ods by a large margin, showing the superiority in maintaining
the temporal stability along with video frames.

To further quantitatively analyze the effect of the proposed
feature rectification process, we also evaluate the percentage
of corrected labels that are inconsistent with the labels from
the warped features when increasing the keyframe interval.
The percentage of corrected labels (CL) between the warped
prediction Pw

i−1→i and the final prediction of the labeled frame
Pi is computed as:

CL =
1

hw

∑
x,y

Diff(P
w
i−1→i (x, y) , Pi(x, y)), (9)

where Pw
i−1→i, Pi∈ RW/4×H/4, w = W/4, and h = H/4.

Diff donates the label difference the same as the definition
in Eq. (3). The average percentages of corrected labels across
different keyframe intervals on Cityscapes and CamVid are
shown in Fig. 11. We observe that the number of the corrected
labels is directly proportional to the keyframe interval. It
indicates that with the propagation of features, the model
gradually distrusts the feature warping results and relies more
on the updated features.

D. Visualization

To qualitatively evaluate the proposed method, we visualize
the segmentation results of some samples from the Cityscapes
dataset and CamVid dataset in Fig. 12. The keyframe interval
is set to 9 for all samples. We extract keyframe features using
the backbone network, and then propagate and rectify the
features to the labeled frame Ii. The black-and-white maps
shown in these two figures are coarse distortion maps, edge
maps, and fine distortion maps. The last three colorful maps
are the prediction maps from the warped features, the merged
features, and ground truth. It can be observed that: (1) The
coarse distortion map can show the regions of occlusions
(see the person behind the truck in Row 2 of Fig. 12 (a),
and the pedestrian behind the bicyclist in Row 1 of Fig. 12
(b)) and moving boundaries (see the moving bicyclist in Row
4 of Fig. 12 (a)). (2) The edge map precisely locates the
boundaries as well as some thin objects. (3) The fine distortion
map combines the information of coarse distortion map and
edge map, which can represent the regions where the optical
flow estimation may be incorrect. (4) The prediction from
the merged features rectifies the wrong segmentation from the
warped features on distorted regions. The final segmentation

performances on the distorted regions like thin poles and traffic
light (see Row 1 in Fig 12 (a), and Row 3/4 in Fig. 12 (b)),
moving boundaries (see Row 3/4 in Fig. 12 (a), and Row 2
in Fig. 12 (b)), and occlusions (see Row 2 in Fig. 12 (a), and
Row 1 in Fig. 12 (b)) are improved significantly.

E. Ablation Study

To demonstrate the effectiveness of the components in
the proposed method, we define three settings to exclude
some parts from the original architecture. The evaluation is
performed on the original resolution on Cityscapes dataset.
The quantitative results are reported in Table IV, and the
experimental details are described as follows:

Network structure. In training details, we mentioned that
the FlowNet is pretrained on the synthetic Flying Chairs
dataset and then jointly trained with CoNet. To verify the
effect of jointly training FlowNet on the entire model, we fix
the FlowNet parameters during training. From Table IV, it is
obvious that fixing parameters brings a significant accuracy
drop, showing a decrease of 3.37% on Cityscapes and 2.73%
on CamVid with 9 keyframe intervals. It proves that it is
important to fine-tune the FlowNet on the video datasets.
Besides, to analyze the effect of PPM, the ablation study
isolates PPM while keeping other parts intact. Replacing the
PPM with a simple 3 × 3 convolution only produces a slight
decrease in accuracy (less than 1% on both datasets). We claim
the reason is that the downsampling factor (64) is enough to
obtain a large receptive field, leading to limited accuracy gain
of adding PPM. In addition, we employ three consecutive FFM
in CoNet to fuse the feature maps with various resolution by
exploiting attention mechanism. To fully analyze the benefits
bought by feature fusion modules, we remove some FFM
and obtain lighter CoNet counterparts to compute the updated
features. For Cityscapes dataset, the average running time
of the original CoNet, CoNet without FFM-2, and CoNet
without FFM-2 and FFM-3 is 14.61, 12.26, and 10.84 (ms),
respectively. Removing the modules can decrease the inference
time slightly, yet it causes varying degrees of accuracy degra-
dation. For instance, when discarding the FFM-2 and FFM-3
simultaneously, the accuracy dropped by 1.21%.

The warped features Fw
k→i affects the segmentation of non-

keyframes in two ways. Firstly, in CoNet, Fw
k→i is concate-

nated as a layer of Nupda to output the updated features. Sec-
ondly, in feature fusion process, Fw

k→i is adaptively combined
with the updated features to generate the merged features. To
validate the functionality of the warped features to the final
prediction of non-keyframes, we block the effect of the warped
features Fw

k→i on segmenting non-keyframes (including the
feature concatenation and feature combination). On one hand,
there is a consistent decline of around 1.2% on Cityscapes
and around 2% on CamVid with different keyframe intervals
when canceling the concatenation operation of Fw

k→i in Nupda.
It proves the importance of the warped features in providing
useful information for the generation of updated features. On
the other hand, when discarding the feature concatenation and
combination of Fw

k→i simultaneously, the experimental results
show a consistent accuracy of 67.32% on Cityscapes and
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Fig. 12. Visualization of some samples on (a) Cityscapes and (b) CamVid dataset. The keyframe interval is set to 9. From left to right: labeled video frame,
coarse distortion map, edge map, fine distortion map, prediction map from the warped features, prediction map after feature rectification, and ground truth.

62.46% on CamVid regardless of the keyframe interval. The
reason is that without the feature concatenation and combi-
nation of Fw

k→i, the segmentation of non-keyframes will lose
the connection with the previous frames. The merged features
Fm
i is obtained by multiplying the fine distortion map Mf

k→i

with the updated features Fu
i directly. The multiplication of

Mf
k→i does not affect the argmax operator to generate the

non-keyframe prediction map. Hence, essentially the non-
keyframe prediction merely relies on Nupda which has limited
layers and insufficient receptive fields. This explains why the
accuracy degradation is so severe. The feature information
compensation between the warped features and the updated
features can produce more comprehensive merged features,
and yield a promising non-keyframe segmentation.

Distortion map. In the feature fusion process, we combine
the coarse distortion map and the edge map to generate the fine
distortion map. In this ablation study, we carry out experiments
by utilizing only one of the maps as the final distortion map

to guide the feature rectification. As shown in Table IV, it
causes a decrease in segmentation accuracy, especially when
the keyframe interval is large. For instance, if we merely adopt
the coarse distortion map, the accuracy declined by 0.97% on
Cityscapes when the keyframe interval is set to 3, while the
accuracy dropped by 2.1% with 9 keyframe intervals. When
the keyframe interval is small, the propagation distance of
feature warping is short, and the distorted areas in the warped
features are relatively limited. A coarse distortion map or an
edge map can also provide rough distorted regions. However,
as the keyframe interval increases, the warped features contain
more wrong values in moving boundaries, thin objects, and oc-
clusions due to the imprecise optical flow estimation. Applying
only one of the maps cannot detect sufficient different kinds
of distorted regions in the warped features, leading to a rapid
accuracy decline. In addition, the magnitude of decrease in
accuracy by merely employing the edge map is smaller than
that of using the coarse distortion map since the edge map
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TABLE IV
ABLATION STUDY ON CITYSCAPES AND CAMVID WITH KEYFRAME INTERVALS {3,5,7,9}. NUMBERS IN RED REPRESENT THE BEST RESULTS.

Experimental Setting Target
Accuracy (mIoU, %) with different keyframe intervals
Cityscapes CamVid

3 5 7 9 3 5 7 9
FlowNet fixed Model structure 74.58 73.15 71.47 70.34 71.86 70.75 69.49 68.53

w/o PPM Model structure 75.87 75.18 73.91 73.58 73.15 72.33 71.19 70.48
w/o FFM-3 Model structure 75.31 74.94 74.01 73.34 73.06 72.16 71.00 70.45

w/o FFM-3 & FFM-2 Model structure 74.71 74.27 73.18 72.50 72.58 71.43 70.04 69.37
w/o concatenation of Fw

k→i Model structure 74.78 74.17 72.95 72.71 71.25 70.33 69.78 69.13
w/o the warped features Fw

k→i Model structure 67.32 67.32 67.32 67.32 62.46 62.46 62.46 62.46
w/ coarse distortion map Mc

k→i only Distortion map 74.95 73.98 72.49 71.61 72.75 71.68 70.20 69.51
w/ edge map Me

i only Distortion map 75.80 75.02 73.67 72.80 73.18 72.40 71.18 70.57
wf = 0.3 in Eq. (4) Distortion map 75.79 75.19 74.00 73.64 73.27 72.55 71.45 71.01
wf = 0.8 in Eq. (4) Distortion map 75.57 74.82 73.55 73.14 73.08 72.08 70.88 70.27

w/o edge-semantics loss Les Objective function 75.61 74.95 73.77 73.40 73.20 72.43 71.29 70.68
w/o edge loss Le Objective function 75.68 75.06 73.84 73.39 73.14 72.36 71.25 70.72

w/o both Les and Le Objective function 75.38 74.71 73.37 72.99 73.21 72.15 70.84 70.33
The proposed Full model 75.92 75.38 74.24 73.71 73.51 72.89 71.77 71.26

contains more distorted regions information than the coarse
distortion map.

In Equation (4), the hyper-parameter wf is leveraged to
balance the effect of the coarse distortion map and the edge
map. wf is set to 0.5 in the proposed method. To validate
the robustness of wf , we set the value to 0.3 and 0.8 to train
the model. A higher wf indicates that the fused distortion
map relies more on the coarse distortion map and vise versa.
The experiments show that assigning a smaller wf to the
coarse distortion map has similar performance on segmenta-
tion accuracy compared with wf = 0.5, while setting a high
wf has caused a negative impact on segmentation accuracy.
The accuracy declined by 0.07% and 0.57% over 9 keyframe
intervals on Cityscapes with wf set to 0.3 and 0.8, respectively,
respectively. Since the coarse distortion map contains less
distortion information than the edge map, counting on the
coarse distortion map heavily may degrade the effectiveness
of the final distortion map.

Objective function. We define an innovative edge-
semantics loss to strengthen the supervision of distorted re-
gions with classes. The edge loss is also introduced to super-
vise the learning of boundaries and thin objects. In the ablation
study of objective loss, we separately drop the edge-semantics
loss Les, the edge loss Le, or both the two loss items.
As Table IV shows, if disabling either the edge-semantics
loss or the edge loss, the accuracy decreases moderately.
The downward trend on CamVid dataset is more obvious
than that of Cityscapes. Moreover, dropping the loss items
simultaneously aggravates the accuracy decline. The edge &
thin object perceiving module classifies the boundaries into
one class (0/1 classification). The edge loss only supervises
the network to distinguish the edge from non-edge regions,
thereby losing the information of boundary classes. The edge-
semantics loss reinforces the distorted region segmentation
with correct classes and recovers the important class infor-
mation. Under the combined effect of boundary supervision
and distorted region’s class supervision, the entire network can
achieve improved segmentation results on distorted regions.

V. CONCLUSION

In this paper, we present a distortion map-guided feature
rectification framework for efficient video semantic segmenta-
tion. The method in this work is based on the idea of feature
warping and correction. We obtain the temporal correlations
between adjacent frames through an optical flow network, and
then warp the features of the keyframe to the consecutive non-
keyframes. The prediction from the warped features has the
good property of temporal continuity. However, the segmen-
tation of regions like occlusions, thin objects, and edges may
be inaccurate due to the imprecise optical flow estimation in
these regions. To correct the features in these distorted regions,
we fuse the updated feature information output from a light
correction network into the warped features. The feature fusion
process is guided by a distortion map, which can detect the
distorted regions with imprecise optical flow. Furthermore, to
strengthen the segmentation ability of distorted regions with
correct label information of CoNet, we introduced an edge loss
and an edge-semantics loss to implement the edge supervision
and the distorted region supervision with classes. Extensive
experimental results on Cityscapes and CamVid demonstrate
that the proposed method shows superiority in accuracy and
temporal consistency over the existing methods.
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