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Abstract— In this paper, we present a novel end-to-end pose
transfer framework to transform a source person image to an
arbitrary pose with controllable attributes. Due to the spa-
tial misalignment caused by occlusions and multi-viewpoints,
maintaining high-quality shape and texture appearance is still
a challenging problem for pose-guided person image synthesis.
Without considering the deformation of shape and texture, exist-
ing solutions on controllable pose transfer still cannot generate
high-fidelity texture for the target image. To solve this problem,
we design a new image reconstruction decoder – ShaTure which
formulates shape and texture in a braiding manner. It can
interchange discriminative features in both feature-level space
and pixel-level space so that the shape and texture can be
mutually fine-tuned. In addition, we develop a new bottleneck
module – Adaptive Style Selector (AdaSS) Module which can
enhance the multi-scale feature extraction capability by self-
recalibration of the feature map through channel-wise attention.
Both quantitative and qualitative results show that the proposed
framework has superiority compared with the state-of-the-art
human pose and attribute transfer methods. Detailed ablation
studies report the effectiveness of each contribution, which proves
the robustness and efficacy of the proposed framework.

Index Terms— Human pose transfer, attribute transfer, Sha-
Ture block, adaptive style selector module.

I. INTRODUCTION

HUMAN pose and attribute transfer is a conditional image
generation task that transforms a source image to a

target image based on a pair of given pose heatmaps with
selected attributes. Due to the spatial misalignment caused
by occlusions and multi-viewpoints, maintaining original tex-
ture appearance is still a challenging bottleneck for pose-
guided person image synthesis. Different from traditional pose
transfer, controllability of attributes such as changing specific
garment increases the difficulty for this task. From Figure 1,
we visualize some examples of simple attribute transfer and
combination of pose and attribute transfer. Benefitting from
its commercial values, it has tremendous potential computer
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Fig. 1. Visualization of the proposed method to perform attribute transfer
using a source pose or an arbitrary pose. We present 4 types of attributes
including upper body, pants, full body and gender style. Please zoom in for
more details.

vision applications such as virtual try-on [1], data augmenta-
tion for person re-identification [2] or video generation [3].

There are basically two types of approaches applied
in the task of human pose transfer, including prior-based
and attention-based methods. For the prior-based approach
[4]–[8], it consists of two separate networks for different
purposes including a prior generator and an image generator.
There are various kinds of prior knowledge such as coarse
person image [4], [5], semantic mask [6] or optical flow
[7], [8]. Notwithstanding these types of prior generative meth-
ods can leverage extra constraints to guide the transforma-
tion, non-end-to-end designs increase the training complexity
of the network development. Due to the nature of specific
prior information, there is no proper aggregation of shape
and texture characteristics. For example, the semantic masks
cannot provide reconstructive guidance of texture due to sparse
distribution; the prior-based methods have the problem of large
variation between the source pose and target pose resulting
in misaligned shape generation and texture distortion. Apart
from the prior-based approaches, the attention-based methods
[9], [10] show comparative performance in quantitative accu-
racy. They apply the attentional mechanism to project the
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source pose on the source image. Then the activated features
are transformed according to the target pose. However, the
visual quality should be improved due to lack of supervision
on the regions without activation of pose landmarks.

In addition to pose-guided person image generation, con-
trollable pose transfer is an extended task which allows users
to change the attributes of the source image. Some applications
of attribute transfer were found in face generation [11]–[13]
such as changing facial expressions or customizing the scale
of a particular sense organ. For human pose and attribute
transfer, it supports substitution of different components of
person image including garments, pants, face, or gender while
generating new posture based on target pose. ADGAN [14]
was the first work to solve this problem by introducing
a shared encoder to embed the features of each attribute
by part. Zhang et al. [15] introduced a prior-based model
to pre-generate a semantic mask while using spatial-aware
normalization to transform the per-region attributes. Although
these two great works can accomplish the task of attribute and
pose transfer, the deformation between the shape and texture
is still an issue. Apart from disentanglement of shape and
texture, it is hard to generate new content for occluded regions.
In terms of completeness of garment and characteristics of
face, it cannot generate fine-grained person image. Although
PISE [15] tried to deal with this problem by applying a per-
region normalization, it failed to generate a context-aligned
texture representation compared to the original source image.
It is because the most informative features of the texture are
distorted during the encoding process, especially in down-
sampling operation. Moreover, the multi-scale manipulation
on classifying the categories of human part increases the
difficulty to transfer the style feature representations for both
garments and person characteristics. As a result, it is important
to capture multi-scale features to generate vivid patterns from
the source image.

To solve these problems, we propose a novel end-to-end
framework – ShaTure to cope with the problem of human
pose and attribute transfer. To achieve controllable attributes
on the generated image, we firstly generate segmented human
parts through an external human parser to separate the human
body attributes. Different from previous methods [14], [15],
we design a Style Encoder to decompose the source attributes
into the style embedding without source pose and regulariza-
tions. Since the existence of multi-scale objects in the source
image confuses the style codes, we introduce an Adaptive
Style Selector (AdaSS) Module to facilitate the multi-scale
feature extraction, so that the refined style representations can
be generated. To learn the spatial correspondence between the
source pose and target pose, we employ a Correspondence
Encoder to acquire the geometric transformation mapping.
In the reconstruction process, we propose the ShaTure Block
to deform the extracted shape and texture representations
in a braiding manner in order to exchange discriminative
features in both feature-level space and pixel-level space. The
main benefit of generating images referenced from pixel-level
source is that it can provide hints of highly similar textures and
patterns. For the sake of synthesizing new content, we need
information from feature-level space to mutually cooperate

in the generation for revealing the intrinsic characteristics of
original image.

The contributions of this work can be summarized in the
following three perspectives:

1) Controllable Pose-Guided Person Image Generation: We
propose a novel end-to-end framework to transform a source
person image to an arbitrary pose with controllable attributes.
Experimental results show that the images we generate can
maintain high fidelity on shape and texture transformation.

2) ShaTure Block: We design a new image reconstruction
block – ShaTure Block that can decouple shape and texture
in a braiding manner. The shape-and-texture-oriented archi-
tecture can preserve more details of garments and person
characteristics.

3) Adaptative Style Selector (AdaSS) Module: We also
develop a new bottleneck module – AdaSS Module which
can enhance the feature extraction capability on multi-scale
objects by self-recalibrating the feature map through channel-
wise attention.

II. RELATED WORK

In this section, we briefly introduce some related works.
We discuss the fields of image generation, human pose transfer
and attention mechanism.

A. Image Generation

Since the rapid development of Generative Adversar-
ial Networks (GANs) [16] and Variational Autoencoders
(VAEs) [17], there are some breakthroughs for image gen-
erative tasks. The GANs consist of a generator and a discrim-
inator, wherein the purpose of the generator is to synthesize
realistic images such that the discriminator cannot distinguish
between the synthetic result and the real target. By condi-
tioning the input source, Mirza and Osindero [18] proposed
the conditional generative adversarial networks (cGANs) to
generate images with some specific constraints so that they
could meet the desired purpose. By further increasing
the applicability of conditional generation, Isola et al. [19]
designed the Pix2Pix framework for image-to-image trans-
lation, in which both input and output are images with
flexible domains rather than latent codes. To modulate the
style features with customized scale, Karras et al. [20] pro-
posed an adaptive instance normalization (AdaIN) to inject
style features in form of scale and bias. Based on this
idea, Park et al. [21] suggested a spatially adaptive denor-
malization (SPADE) method to extend the modulation factors
from vectors to tensors and use a semantic map to provide
spatially contextual information. Although these kinds of
non-linear normalization approaches can enhance the visual
quality of the generated images, they cannot deal with the
spatial misalignment problem and the sparse correspondence
between the source and target landmarks for human pose
transfer. Based on the success of SPADE [21], in this paper,
we propose to generalize the input source from non-aligned
style features to spatially aligned pixel-wise attributes so that
it can optimize the fusion of shape and texture with learnable
parameters.
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B. Human Pose Transfer

Research on human pose transfer has recently drawn a lot
of attention in the field of computer vision. In general, there
are two types of architectural designs used in this challenging
task, namely prior-based and attention-based approaches.

For the prior-based methods, there are two separate net-
works including a prior generator and an image generator with
different training schemes. Ma et al. [4] initially proposed
a pose-guided person generation network PG2 to start this
task. They proposed a prior-based model to transfer the pose
by combining a coarse transferred result and a difference
map but such fusion could not produce a plausible image
due to unreliable texture refinement of the difference map.
Yang et al. [5] and [22] applied a similar coarse-to-fine idea.
They tried to deal with the unreliable texture refinement
problem by introducing a residual texture map and a deeper
feature extraction encoder. However, the result still suffers
from facial representation distortion and the enhancement
is limited. Instead of using residual map, Dong et al. [6]
suggested to find a style transformation by computing the cor-
relation between the pre-generated parsing map and the target
one. Although it can find the semantic correspondence between
the source image and target image, this relationship is not well
defined because of inaccurate parsing generation. To address
this problem, Li et al. [7] proposed to transfer appearance fea-
tures from 3D space to 2D space by using optical flow. Based
on similar operation of prior flow generation, Ren et al. [8]
further enhanced the spatial alignment for pose transfer by
leveraging a differentiable global-flow local-attention block to
reassemble the inputs at the feature level. Although optical-
flow transformation can perverse some details of the source
image, there is no correspondence between the shape and
texture for the rendering process. It leads to coarse generation
quality when there is a large pose variance due to unreliable
flow-warping operation.

For the attention-based methods, it normally follows
Pix2Pix [19] network as the baseline to further enhance
the residual block with attentional mechanism. Zhu et al. [9]
proposed the PATN to progressively inject the pose-attentional
activation to the source features. Based on similar atten-
tional operation, Huang et al. [10] extended the network to
an encoder-decoder architecture while proposing an adap-
tive normalization to normalize the appearance representation
with the target pose. Tang et al. [23] also applied atten-
tional operation to parallelly update the shape and appearance
embeddings of source image. Notwithstanding these kinds of
attentional block can obtain a higher score on quantitative
evaluation, the qualitative visualization shows blurry effect
on the generated images due to insufficient shape and texture
guidance.

For controllable pose transfer, it is an extended task from
traditional pose transfer which allows users to dynamically
change the attributes of the source image. Men et al. [14]
proposed a shared encoder to embed the features of each
attribute one by one. Although it can save the computational
cost during the encoding process, the global style of the
generated image may not be aligned with the source image
due to the lack of global context knowledge. Zhang et al. [15]

TABLE I

BRIEF INTRODUCTION OF SYMBOLS

introduced a prior-based model to pre-generate a semantic
mask while normalizing per-region attributes with spatial-
aware generation. Without considering the deformation of
shape and texture, these methods fail to generate high quality
of texture from the source image. To solve this problem,
we propose an end-to-end model with a series of progressive
ShaTure Blocks to deform shape and texture simultaneously
so that highly plausible can be synthesized.

C. Attention and Gate Mechanism

Different from attention-guided methods mentioned in
Section 2B that use spatial attention, the gated attention
methods can focus on the globally channel-wise relationship
within the target feature expressions instead of being activated
by the whole driving source. It is a means of highlighting the
most informative components of a signal by reallocating the
computational resources on the features [24]–[28]. To empha-
size cross channel dependency, Hu et al. [28] proposed the
squeeze-and-excitation operation to self-recalibrate the feature
maps via gated mechanism. Apart from channel-wise depen-
dency, Park et al. [29] and Woo et al. [30] added spatial atten-
tion during the excitation process so that location information
can be involved. Based on similar idea, Li et al. [31] extended
it to a weighted gate by splitting the features maps into
two separated representations with different sizes of receptive
field of view. This dynamic selection mechanism allows each
neuron to adaptively optimize the receptive field size based
on multiple scales of input features. We observe that it is
suitable for human pose transfer task because of multi-scale
distribution caused by multiple viewpoints and occlusions.
To alleviate the spatial misalignment effect, we exploit the
idea of dynamic kernel selection for each generative block
to extract multi-scale features. It can adaptively optimize the
kernel size of receptive field to manipulate the input signals.

III. PROPOSED METHOD

A. Problem Definition

Given a source person image Is and a pair of spatially
misaligned pose heatmaps including source pose Ps and target
pose Pt , the task of pose-guided human synthesis is to transfer
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Fig. 2. Overview of the network architecture for our framework. It is built based on variational autoencoders (VAEs) architecture including two feature
encoders and one generative decoder, namely Style Encoder, Correspondence Encoder and ShaTure Decoder. During training stage, we utilize the branch
of pose transfer to learn the feature aggregation. In each of the Shature Layer in ShaTure Decoder, there is an Adaptive Style Selector (AdaSS) Module
highlighted with orange color and a ShaTure Block highlighted with yellow color. The AdaSS Module is responsible for extracting multi-scale features I l

ms
from the Referenced style I l

s . By taking the output of previous layer I l−1
g , multi-scale features I l

ms , selected attributes Ak and referenced transformation
features T as input, the ShaTure Block can generate plausible images with a braiding approach.

as many details as Is to a new person image Ig upon the
shape of Pt . In addition to pose transfer, equipping attribute
controllability requires semantic information to segment cor-
responding human parts. We define the semantic map as
Ms ∈ R

W×H×C where C is the total number of classes of
interest, W is the width and H is the height. It is spatially
aligned with Is and Ps . In this paper, we propose an end-to-end
generative framework F (·) to deal with both pose transfer and
attribute editing simultaneously, which can be expressed as

Ig = F(Is, Ms , Ps , Pt ). (1)

B. Network Architecture

An overview of the network architecture is shown in
Figure 2. Basically, the proposed framework is built based
on variational autoencoders (VAEs) architecture including two
feature encoders and one generative decoder, namely Style
Encoder, Correspondence Encoder and ShaTure Decoder. The
objective of the Style Encoder is to encode the decomposed
attributes As ∈ R

W×H×3C into a latent space, where As =
Is � Ms and � denotes class-wise multiplication. The bot-
tlenecks of the Style Encoder are three consecutive residual
maps which are of the same dimension but with different
receptive fields of view. In order to learn the geometric
correspondence of shape and texture between the source image
and the target image, we set up a Correspondence Encoder to
acquire the transformation mapping T by taking Is , Ps , Pt

as input. The reference transformation mapping T is shared
to each progressively generative layer in the decoder. For the
decoder part, we propose a new ShaTure decoder block to

jointly encapsulate the extracted shape and texture represen-
tations from the encoders in a braiding manner in order to
transfer discriminative features from the original image. The
detailed elaboration of the ShaTure Block will be presented
in Section 3C. At the end of the Style Encoder, there is
an Adaptive Style Selector (AdaSS) Module responsible for
further enhancing feature extraction capability by applying
squeezed self-attention operation. More information of this
module will be introduced in Section 3D. We also include
the inference process to perform attribute transfer which will
be discussed in Section 3E.

C. ShaTure Block

To effectively explore the relationship between shape and
texture, we design a braiding module – ShaTure Block to
exchange discriminative features in both feature-level space
and pixel-level space. The main idea of the ShaTure Block
is to reconstruct a plausible person image by using the
shape features from the Style Encoder while preserving pixel-
level patterns from source image with corresponding spatial
transformation. Although style information is embedded in
the encoded features of the encoder, the fine-grained texture
information is degraded due to the consecutively lossy down-
sampling operation. To recover as many perceptual details as
the source image and be able to generate spatially aligned
objects based on a given pose-guided heatmap, we propose to
synthesize shape and texture in a braiding manner. As shown in
Figure 3, the ShaTure Block consists of two sub-nets namely
Shape Module and Texture Module. Both sub-nets take the
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Fig. 3. Graphical structure of the ShaTure Block. It consists of two
kinds of sub-nets namely Shape Module and Texture Module. Both sub-
nets take the output of previous module as the major modulating signals.
The Referenced multi-scale style features are generated from the Adaptive
Style Selector (AdaSS) Module. There is a small spatial transformer network
to produce the protocol for affine transformation with the source attributes.
Finally, the Shape Module and Texture Module are connected in a parallelly
braiding manner.

output of previous layer as the major modulating signals.
However, they play different roles regarding reconstruction of
shape and texture respectively during the generation process.
There are two symmetric branches inside a ShaTure Block.
For one of the branches, the Texture Module T (·) takes the
output of Shape Module S (·) as input source for further
enhancement, and vice versa. Mathematically, the relationship
of a ShaTure Block can be expressed as

I l
g = T2

(
S1

(
I l−1
g , I l

ms

)
, Ak, T

)
+S2

(
T1

(
I l−1
g , Ak, T

)
, I l

ms

)
. (2)

where I l−1
g is the generated result of previous ShaTure Block,

I l
ms are the multi-scale reference style features computed

from AdaSS Module which will be intensively discussed in
Section 3D, Ak are the decomposed attributes selected from
the concatenated attributes A with a sub-set of integers K ⊆ C
(classes of semantic mask) which are the components needed
to be transferred, T is the deep spatial transformation features
computed from Correspondence Encoder.

For the Shape Module, it aims to recover the whole shape
and style from source image based on the target pose Pt or pre-
vious layer I l−1

g . We exploit a spatially adaptive image trans-
lation approach based on the SPADE [21] denormalization
unit. We firstly apply a shared convolutional layer to extract
intermediate features corresponding to specific resolution. It is
then manipulated as a scaling and bias factor respectively.
Instead of using batch normalization [32], we apply instance
normalization [33] to calculate the mean and variance across
the spatial location. It can provide better visual and appearance
in-variance compared to batch normalization. The activated

features of Shape Module at space (n ∈ N, c ∈ Ci ,
h ∈ H i , w ∈ W i ) can be expressed as:

S∗ = δ

(
γ

(
Xl

s

)
· f i

n,c,h,w − ui
nc

σ i
nc

+ β
(

Xl
s

))
. (3)

where δ is the LeakyReLU function [34], ui
nc and σ i

nc are the
mean and stand deviation of f i

n,c,h,w which is a function of
either a previous layer I l−1

g or a demodulated transformation
result T . The learnable parameters scale γ

(
Xl

s

)
and bias

β
(
Xl

s

)
are convoluted by input source Xl

s which is the target
pose Pt at layer l for the Shape Module. As shown in
Figure 3, there are three independent weights involved in
the computation. We firstly utilize a shared convolution to
generalize the input source to some features with a constant
number of channels. Based on the shared features followed
by a LeakyReLU function [34], the scale γs∗ and bias βs∗
features are generated by another two weights separately.

For the Texture Module, we further investigate the enhance-
ment of discriminative pattern synthesis by making use of the
deep transformation features T . It can maintain part of texture
information of the source image by directly transforming
features in pixel-level space. However, the ability of generating
new content for segmented attributes being adopted to a new
pose is limited. To solve this problem, we generalize the
input source of Shape Module mentioned above from style
features to warped target attributes Ak . The spatially adaptive
modulation operation can generate corresponding shape while
preserving the context of the warped attributes. In addition to
being effective for pose transfer, it contributes a more robust
attribute transferring ability. We use Xl

t to denote the input
source of Texture Module at layer l which can be expressed as:

Xl
t = AkHl

t (T ). (4)

where Hl
t (·) is a simplified version of spatial transformer

network [35] at layer l to be served as an affine parametric
transformation. It localizes the geometric feature representa-
tions by using two convolutional neural layers. We also use
a fully connected network as a grid generator to generate
a transformation grid indicating the affine flow to warp a
source pixel to a target location. Since directly transforming
the source image in pixel-level space cannot generate new
content information, we further render the warped attributes
by applying Equation 3 on Xl

t to optimize the completeness.
The generation of learnable parameters scale γt∗ and βt∗ for
Texture Module is similar to the computation of Shape Module
by changing Xl

ms to Xl
t as the input source.

D. Adaptive Style Selector Module

To synthesize high-quality images, we generate the image
from the source pose to a transformed image with a progressive
decoder. During the process of reconstruction, we exploit the
reference style encoded from the source image. Similar to
the architecture of U-Net [36], one of the solutions is to
directly utilize the style features with different resolutions
from the layers of Style Encoder. However, based on our
observation, the style features with different resolutions in the
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Fig. 4. Graphical structure of the adaptive style selector. There are 3 depth-
wise convolutional blocks with different sizes of receptive field of view. The
shared gate consists of a global average pooling layer and a small fully-
connected network. The joined style codes are highlighted by attentional
self-recalibration.

Style Encoder contain sparse semantic information leading
to confused synthesis in the image reconstruction layers,
especially some shallow encoding layers which make it hard
to generalize the representative style codes. We believe that
the style embedding itself from the Style Encoder is variant
to the up-sampling level of reconstruction layers. It should
be projected to a common space where the style features are
consistent. Although a vanilla encoder can embed a source
image into some style codes at the end of the most down-
sampled layers, it cannot provide informatively multi-scale
features to be adaptively customized for each generative layer.
To solve this problem, inspired by SENet [28], we propose
an Adaptive Style Selector (AdaSS) Module to strengthen the
ability of dynamic reconstruction for each decoding block.
The idea behind the AdaSS Module is to adaptively extract
informative features from the source styles by emphasizing
cross-channel correspondences between the bottlenecks of the
style encoder. With such attentional aggregation, the network
can allocate the attention toward the most suitable style
features to corresponding reconstruction layers.

To enforce contextual knowledge, we design a deep residual
bottleneck at the end of the encoder. Referring to Figure 4,
it comprises three blocks of feature representations with the
same resolution but different receptive fields. The objective of
enlarging the field of view is to enable the network to encapsu-
late more contextual information with different scales of ker-
nel. Moreover, we also adopt the depth-wise/group separable
convolution [37], [38] to reduce the number of parameters by
partitioning convolution into a depth-wise kernel and a point-
wise kernel. We sequentially apply point-wise convolutions
with an 1 × 1 kernel on the last style feature representation
for t repetitions. To expand the receptive field, we stack the
depth-wise convolutions with some 3 × 3 kernels along with
group g for each point-wise convolution. It can get a receptive
field of size (2t + 1) × (2t + 1). We take the reference style
I l
s extracted from the Style Encoder as input. For simplicity,

we denote the style features I l
s as x ∈ R

w×h×c , then the output
of the separable convolution can be represented as:

x̂R = VR

(
T∑

t=1

Ut (x)

)
. (5)

where VR (·) indicates depth-wise convolution, Ut (·) is the
t th stacked point-wise convolutions, the R represents the

kernel size which is linearly proportional to repetitions
R = 2T + 1. We set the maximum of receptive field of view
to 7 × 7, i.e. T = [1, 2, 3].

Once we have the multi-scale representations, the next step
is to dynamically fuse them according to the level of recon-
struction layers. Inspired by the squeeze-and-excitation [28]
operation, we introduce a shared attentional aggregation to
generate channel-wise statistics. To highlight the channel-wise
dependency, we obtain a master activation scalar using a global
average pooling to downscale the dimension followed by two
fully-connected (FC) layers. Finally, we aggregate the gated
style features by a weighted summation. The formulation can
be represented as:

F
(
x̂R

) = σ
(
W2δ

(
W1 Avgpool

(
x̂R

)))
(6)

I l
ms =

∑
R={3,5,7}

x̂R ⊗ F
(
x̂R

)
(7)

where σ denotes sigmoid function, δ refers to ReLU [39]
function, W∗ are the FC layers and the ⊗ operator indicates
Hadamard product. Since the W∗ are learnable functions,
it can provide discriminative responses with respect to level
of reconstruction layers. The shared property also serves as a
common agent to intrinsically introduce dynamics on multiple
channels with the same judging criteria.

E. Objective Function

To synthesize photo-realistic person images and maintain
details of the source images, we mainly focus on pixel-level
and feature-level loss functions. Following similar training
strategy of the existing pose transfer frameworks [9], [10],
[14], we formulate the objective function with four terms
including an adversarial loss Ladv , a L1 loss L1, a perceptual
loss Lper and a contextual loss Lcx as follows:

L f ull = λadvLadv + λ1L1 + λperLper + λcxLcx (8)

where λadv , λ1, λper and λcx are the corresponding hyperpa-
rameters to optimize the performance.

1) Adversarial Loss: We utilize the adversarial loss Ladv

to maintain consistency of style and texture by leveraging
two independent discriminators, Ds and Dc. The D∗ consists
of two down-sampling convolutional layers followed by three
convolutional blocks for enhancement of discriminative capa-
bility. The joint adversarial loss terms are formulated as:
Ladv = EIs ,It ,Ig

[
log (Ds (Is , It )) + log

(
1 − Ds

(
Is , Ig

))]
+ EIt ,Pt ,Ig

[
log (Dc (Pt , It ))+log

(
1−Dc

(
Pt , Ig

))]
,

(9)

where Ds and Dc are the visual style discriminator and pose
content discriminator; (I s, It ) ∈ Ireal , Pt ∈ Preal , Ig ∈ I f ake

indicate samples from the distribution of real person image,
real pose heatmap and generated person image.

2) L1 Loss: To enforce pixel-level supervision, we employ
pixel-wise L1 loss to minimize the least absolute deviations
between the generated image and the ground truth.
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3) Perceptual Loss: To minimize the distance in feature-
level space, we apply the standard perceptual loss [40] in our
network. It aims to enhance the visual quality by increasing
the similarity of feature matching in a large-scale classification
network. Precisely, it computes the pixel-wise L1 difference of
a selected layer θ� (·) from a VGG-19 [41] model pre-trained
in ImageNet [42]. It is defined as:

Lper = 1

C� H�W�

∑
c,h,w

‖θ�(Ig)|c,h,w − θ�(It )|c,h,w‖1. (10)

where C� is the number of channel, H� and W� are the height
and width of the feature maps in particular layer � respectively.

4) Contextual Loss: To maximize the similarity between
two non-aligned images with similar context space, we exploit
the contextual loss [43] to allow spatial alignment according
to contextual correspondence during the deformation process.
It makes use of the normalized Cosine distance between two
feature maps to measure the similarity of two non-aligned
features. It is formulated as:
Lcx =− 1

C�H�W�

∑
c,h,w

log
[
C X

(
δ�

(
Ig

) |c,h,w, δ� (It ) |c,h,w

)]
,

(11)

where � = relu {32, 42} layers from a pre-trained
VGG-19 [41] model θ (·), the C X (·) function is the similarity
measurement defined in [43].

IV. EXPERIMENTS AND RESULTS

In this section, we describe the implementation details of the
proposed framework. Firstly, we introduce the dataset used in
all experiments. Secondly, we define some evaluation metrics
that can quantify the images generated from our framework.
Moreover, we compare our proposed method with other state-
of-the-art methods to verify the superiority quantitatively and
qualitatively. We also conduct comprehensive ablation studies
on each proposed component to show the efficacy of our
contributions. Finally, we provide some visualizations on the
feature maps to demonstrate the roles of Shape Module and
Texture Module.

A. Datasets and Metrics

1) Dataset: In order to demonstrate the effectiveness of
our proposed framework, we conducted experiments of both
pose transfer and attribute editing on the commonly used
benchmarks – In-shop Clothes Retrieval Benchmark Deep-
Fashion [44]. It is a large-scale dataset that can provide
high-resolution person images for these two tasks. It consists
of 52,712 in-shop clothing items with a wide diversity of
garments, poses, viewpoints, and occlusion scenarios. In order
to filter out the noisy samples, we removed the samples of
which pose heatmaps were unable to be detected by human
pose estimator (HPE) [45]. Finally, we sampled a total of
101,966 training pairs and 8,570 testing pairs. The person
identities are not overlapped for training and testing pairs to
ensure the generalization ability. All the images were resized
to 256×176 dimension during both training and testing phases.

For the task requiring controllable attributes, the segmentation
masks were pre-generated by the Look Into Person (LIP) [46]
human parsing algorithm in order to facilitate the training
process. We projected the masks into 7 categories of human
parts including head, upper clothes, pants, shorts, arms, legs
and 1 class for background.

2) Metrics: For general image generation tasks, Inception
Score (IS) [47] and Structural Similarity (SSIM) [48] are
two widely used evaluation metrics to quantify the perceptual
performance and image quality. The IS is used to measure
the global shape consistency by part of an image classifier.
To quantify the structural similarity, the SSIM index is used
to achieve this goal by applying co-variance and means.
We also employ two supervised perceptual metrics including
Fréchet Inception Distance (FID) [49] and Learned Perceptual
Image Patch Similarity (LPIPS) [50] to consolidate the visual
quality assessment in terms of perceptual distance between
the generated images and real images. The FID is used to
measure the reconstruction error between the generated images
and the source images by computing the perceptual distances.
Similar to the FID, the LPIPS is targeted at evaluating the
Wasserstein-2 distance between the distributions of the gener-
ated samples and real samples.

B. Experiment Setting

We implement our proposed solution with the public frame-
work PyTorch. We use Adam optimizer [51] with momentum
β1 = 0.5 and β2 = 0.999 to train our model for 400 epochs
in total. The learning rate is initially set to 1e − 4 which is
linearly decayed to 0 after 200 epochs. The negative slope of
LeakyReLU [34] is set to 0.2. The weighting hyper-parameters
λadv , λ1, λper and λcx are set to 5, 1, 1 and 0.1. All models
are trained and tested on a NVIDIA GeForce RTX 2080 Ti
GPU with 11GB memory. The batch size is set to 4.

C. Experiment Result on Pose Transfer

To illustrate the effectiveness of the proposed network,
we compare it with several state-of-the-art methods on the
task of pose transfer. These methods include PG2 [4],
Def-GAN [52], RATE-Net [5], PATN [9], APS [10],
XingGAN [23], ADGAN [14], GFLA [8] and PISE [15].
Without attribute controllability, this task requires the ability to
transfer the style and characteristics of the original image from
a source pose to a target pose. We present both quantitative
and qualitative results for this task. The generated images of
other methods are inferenced by the pre-trained models from
their public repositories.

1) Quantitative Result: As shown in Table II, our method
outperforms the current state-of-the-art methods with promis-
ing improvement for all evaluation metrics in the validation
set of DeepFashion [44]. It gets the best scores in IS, SSIM,
FID and LPIPS.

More specifically, our method has a better pose transfer-
ring ability compared to attention-based methods including
PATN [9], APS [10] and XingGAN [23]. Noted that although
some attention-based methods [23] can get a good score in IS,
the performance of other metrics and visual quality need to be
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Fig. 5. Qualitative comparisons on the performance of pose transfer with some state-of-the-art methods on the DeepFashion benchmark. From left to right
are the results of PATN [9], APS [10], XingGAN [23], ADGAN [14], GFLA [8], PISE [15] and our method. We compare it with respect to the quality of
shape (a-e) and texture (f-j). The shape is defined as the global view of the model in the generated images while the texture factor focuses on the local details
of the clothing items. Please zoom in for more details.
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TABLE II

COMPARISON OF POSE TRANSFER PERFORMANCE WITH SEVERAL
STATE-OF-THE-ART METHODS ON TEST DATASET OF DEEPFASHION

Fig. 6. Implementation of Style Encoder when performing attribute transfer.
The branch of attribute transfer is activated in testing stage only. If j is
specified, source attribute A j

s is replaced by target attribute A j
t to form the

final encoding attribute A.

enhanced. Due to lack of supervision on sufficient numbers of
pose landmarks, it cannot transfer specific details of the image
although the shape consistency is able to be maintained. For
our method, it achieves higher brands for all evaluation metrics
especially IS and SSIM scores compared to them. It quantifies
that our method can strike a balance between the shape and
texture consistency under the same conditions.

In addition to attention-based approaches, our method also
gets obvious gains compared to attribute-transfer methods such
as ADGAN [14] and PISE [15]. We observe that these kinds
of methods can get a better performance on some supervised
perceptual metrics including FID and LPIPS. It is due to the
reason that there is assistance of warped parsing attributes to
provide pixel-level guidance. Such prior knowledge is helpful
during the reconstruction process. Among three of the frame-
works supporting controllable attributes, our method gets the
best scores for all the metrics especially in terms of FID and
LPIPS. It demonstrates that the proposed method can generate
highly realistic images with less reconstruction error in feature
space. With lower LPIPS score, it indicates that the feature
quality of our synthesized images is highly competitive to the
real data from a global distribution perspective. It represents
that our method can perform very well in pose transfer with
minimum distribution distance which is crucial in domain
transferring tasks.

2) Qualitative Result: Apart from quantitative measure-
ment, we also deliver qualitative comparison to those recent
state-of-the-art methods including PATN [9], APS [10],
XingGAN [23], ADGAN [14], GFLA [8] and PISE [15]. From

Figure 5, our method can produce images with more photo-
realistic quality than other approaches. We focus on two major
factors that can affect the synthesis quality, namely shape and
texture. For a better visual appearance, the shape is defined as
the global view of the model in the generated images while
the texture factor focuses on the local details of the clothing
items.

As shown in Figure 5(a-e), we demonstrate that our method
can generate some images with better shapes for models. For
Figure 5(a), the dress on the model generated from our method
contains the minimum artifacts. For Figure 5(b), we can
transfer more characteristics on the head areas including facial
attributes or hair style than other solutions. We believe that
such variances are benefited from the ability of multi-scale
encapsulation of our Adaptive Style Selector (AdaSS) Module.
To synthesize the occluded regions, our model can predict a
more reasonable hair shape based on little hints on the shoulder
as shown in Figure 5(c). Compared to two methods with
controllable attributes such as ADGAN [14] and PISE [15],
our method can also produce a better visual quality in the
situation of a large pose variation. As shown in Figure 5(d-e),
the images generated from PISE [15] fail to be reconstructed
because of the sparse correspondence between the parsing
masks, like the head and hat. Although ADGAN [14] can gen-
erate reasonable images, there are some artifacts on the regions
with ambiguous objects like hands and back in Figure 5(d) and
rare posture in Figure 5(e). On the other hand, our method can
overcome these challenges. It shows that our method performs
well in shape reconstruction.

To compare the performance in terms of texture synthesis,
we also provide some samples in Figure 5(f-j) to illustrate the
superiority of our method in this perspective. Under the same
pose variation settings, we have the best texture reconstruction
ability which can transfer as much detailed texture as the
source image. As shown in Figure 5(f), the plaid patterns
on the dress are successfully transferred, in contrast with
the thick-line styles transferred by XingGAN [23]. Apart
from singular pattern, there are some combinations of regular
symbols. For example, the diamond shapes and ribbons on the
upper cloth of the model in Figure 5(e) are well maintained in
our generated images while others can keep the color style
only. For some special symbols and unique patterns, it is
hard to transfer to a new pose without distortion due to lossy
interpolation during downsampling encoding. However, our
method is still able to accomplish this goal with a good result.
For example, in Figure 5(h-i), there are some tailor-made
characters or irregular patterns on the shirts of the models.
Previous approaches can only capture the basic shape and
distribution of those details while our method can sustain
a large proportional appearance of those texture information
with minimum distortions. Although GFLA [8] can sometimes
recover some patterns, the visual quality is downgraded due to
the blurry effect caused by unreliable flow-warping. Compared
to the methods with controllable attributes, ADGAN [14] and
PISE [15], our method retains plausible texture transferred
from the source image like the global style of the jumpsuit
in Figure 5(j). We believe that it is the effort of our Sha-
Ture Block that can synthesize the shape and texture in a
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Fig. 7. Qualitative comparisons on the performance of attribute transfer with some state-of-the-art methods on the DeepFashion benchmark. The overall
layout is indicated at the upper-left corner. We present the source and target attribute images with their parsing masks. From left to right are the results of
ADGAN [14], PISE [15] and our method. In order to highlight the difference of the texture, we illustrate the result of upper-body clothes as the source
attribute since there are more variations for this garment compared to others. We demonstrate different angles of view including side (a), back (b) and front
(c-d) view. Please zoom in for more details.

braiding manner so that a photo-realistic image can be well
reconstructed.

D. Experiment Result on Attribute Editing

Apart from pose transfer, our method can also support
attribute transfer in which the style of the source image is
able to be customized by some referenced images while main-
taining the ability of pose transfer. Once the Style Encoder
is fully trained, it is supposed to be able to project each
attribute into the style code space. Therefore, we can perform
attribute transfer during the testing stage by simply replacing
the source attributes with the target attributes. We illustrate
the implementation of Style Encoder for performing attribute
transfer in Figure 6. The decomposition of source attributes
with the segmentation mask is the key element during the
encoding process. We use the same Style Encoder in both
training and testing stages. Instead of encoding all attributes
from source image As as the final attributes A, we replace
some attributes from some referenced images with defined
index j . If j is specified, the source attribute A j

s is replaced
by target attribute A j

t to form the final encoding attribute A.

Noted that the index j is different from the subset k where
the index j is defined by the users during testing stage but the
subset k attributes are hard-coded to be warped in ShaTure
Module. Multiple attributes are also supported by specifying
more than 1 index.

1) Comparison With the State-of-the-Arts: For the task of
pose transfer supporting controllable attributes, we make an
extensively comparative experiment compared to the attribute-
transfer methods such as ADGAN [14] and PISE [15].
As mentioned in Section 3C, the Ak are selected according to
the attribute that needs to be transferred. Based on the semantic
segmentation result containing 8 classes in total, we focus on
only 3 important attributes to be transferred including face,
upper clothes and pants. Therefore, we set K = {1, 3, 5}
during the training stage. When performing attribute transfer
in testing stage, users can swap the referenced components
with the source components respectively. In this comparison,
we show 4 source images associated with 4 driving refer-
ence images for each example in Figure 7. They are with
different scales, poses, viewpoints and clothing styles. Based
on our observation, there are a few visual variations of the
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Fig. 8. Visualization of controllable pose-guided person image generation.
To demonstrate the controllability of our method, we provide some results on
multiple attributes transfer for different angles of view including front-upper-
body (a-b), side-upper-body (c-d) and front-full-body (e) view. We take the
source image as the attribute base. By extracting target attributes from other
images, we can obtain the corresponding style codes. We demonstrate the
attribute transferring result for upper body, pants and face&hair combination.
There are multiple view angles for the source images in order to show the
robustness.

lower-body clothing items such as pants and shorts in the
dataset. We conduct the texture transferring experiments on
upper-body clothing items with the original pose in order to
better distinguish the visual difference. Noted that although it
targets at evaluating the vividness of the texture in priority,
the quality of shape should not be neglected.

Firstly, we compare the visual results when there is a rare
posture in the image. As shown in Figure 7(a), although
the facial appearance is partially cropped, our method can
still synthesize a plausible lip and recover the original skin
color. In general, our method can handle better for those
repeated patterns such as the polka dots and strips. Although
the PISE [15] can transfer the basic outline of the strips, it is
obvious that the whole appearance is blended by unreliable
flow-warping, just like GFLA [8]. We believe that the AdaSS
Module provides positive effect to extract features in a wider

field of view so that the completeness of the texture can be
maintained.

Secondly, we want to investigate the transferring per-
formance when there is no facial expression. It narrows
the perceptual evaluation range down to the garments only.
As illustrated in Figure 7(b), our method can reasonably
follow some texture guidance of the reference images like
the camisoles of the model. More specifically, the generated
results of ADGAN [14] are very similar although the source
texture is totally different. Being too general for the style codes
is the drawback of decoupling attributes by a shared encoder.
By encoding the attributes in group instead of separately, the
result shows that our method can build a connection among
the decoupled attributes during encoding stage so that a better
visual quality can be generated.

Thirdly, it is important to keep as many details as the source
image except the target attributes during the texture transfer.
In Figure 7(c), our method can also transfer more texture
information to the target image. There is a highlight that our
method can preserve the shape as well. For example, it can
successfully retain the hat with original shape and color while
other two approaches fail to do it.

Last but not least, we focus on some texture with decorative
patterns. As presented in Figure 7(d), we demonstrate different
continuous patterns such as chiffons, polka dots which are
hard to be synthesized. Benefited to the spatially aware nor-
malization in our ShaTure Block, our method can retain more
unique patterns at closely geometric location. Meanwhile,
it fine-tunes the whole representation to fit the target shape.
Compared to other approaches, our method can perform better
texture transfer under the same settings.

2) Multiple Attribute Transfer: In order to illustrate the
attribute controllability of our method, we present more results
on attribute transfer with multiple attributes. As shown in
Figure 8, the target attributes are required to be extracted
through a segmentation mask. To demonstrate the diversity,
we provide three kinds of attributes including upper body,
pants and face&hair. Combining face with hair as one attribute
can easily highlight the difference after transferring. We also
randomly select several source images with different view
angles such as front view, side view, back view and fully
front view. We take the source image as the attribute base.
By replacing target attributes from the reference images,
we can obtain the corresponding style codes. For example, the
examples in the last column represent the result of swapping
the upper-body, pants and face&hair attributes extracted from
other candidate images with the source image.

It is observed that the target attributes are successfully trans-
ferred to the source image while the visual quality of shape
and texture can be maintained. The ability of interpolation
for progressive attribute combination is also demonstrated.
In general, our method can handle multiple attributes editing
independently. In Figure 8(a-c), the models with same gender
can preserve the style of the referenced upper-body garment
and the referenced pants. The facial characteristics, contour of
head and hair color can also be well transferred. Apart from
the same gender, our method can also support cross gender
style. We visualize the ability of changing the characteristics
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TABLE III

QUANTITATIVE RESULT OF ABLATION STUDY ON THE SHATURE BLOCK
AND ADAPTIVE STYLE SELECTOR COMPARED TO

THE BASELINE NETWORK

of other gender in Figure 8(d-e). In this setting, our method
can not only naturally transfer the texture of garments but also
adaptively synthesize the appearance to suit the dressing style
for the genders.

E. Ablation Study
In order to prove the effectiveness and robustness of our

network, we conduct a series of experiments on our main
contributions including ShaTure Block and AdaSS Module.
As shown in Table III, we examine our full model starting from
a baseline model composing of a Style Decoder and a SPADE-
liked [21] decoder only. Based on this setting, we replace
the SPADE [21] normalization block with our ShaTure Block.
With the assistance of style and texture enhancement, the
performance is boosted up to 14% of FID score and 6%
of LPIPS score. From another point of view, the FID and
LPIPS score can further be enhanced by 16% and 4% with the
help of AdaSS Module. It can certify the effectiveness of the
ShaTure Block and AdaSS Module with minimum reconstruc-
tion error for image generation. Moreover, the AdaSS Module
contributes a lot of effort for the improvement of IS score
which is up to 6% increment. It can be interpreted that the
multi-scale style representations are significant to maintain
the global shape consistency. Lastly, by comparing the full
module with each setting, the superiority of the metric scores
demonstrates the efficacy of the proposed ShaTure Block
and AdaSS Module. By digging into the details, we also
provide a comprehensive ablation study on the elements of
each suggested unit.

1) Analysis on ShaTure Block: The objective of the ShaTure
Block is to progressively generate good-looking images by
exploiting shape features and texture representations. By com-
paring the quantitative and qualitative results in Table IV and
Figure 9, the full model can surpass its variants. We divide
the quantitative results into 3 categories including Module
analysis, Parallel design and Cascaded design in Table IV.
The details of the settings are described as follows:

a) Module analysis: To recover a reasonable image, the
shape of the person should be sharp and clear. Without a
doubt, we have an obvious difference between the settings
W/o the Shape Module and the Full Model. Moreover, the
visual quality is not up to standard where many artifacts
on the images are easily identified. We also compare the
settings with similar parameters in Parallel design – All
Texture Module, the large margin on the metrics indicates great
importance of Shape Module in the ShaTure Block. Based on
this observation, we can conclude that the Shape Module can

TABLE IV

QUANTITATIVE RESULT OF ABLATION STUDY ON DIFFERENT VARIANTS
OF SHATURE BLOCK. TO SIMPLIFY THE NOTATIONS, WE USE S TO

REPRESENT SHAPE MODULE AND T TO REPRESENT TEXTURE

MODULE. THE STRUCTURE IS A GRAPHICAL REPRESENTATION

TO ILLUSTRATE THE ARCHITECTURE
OF CORRESPONDING DESIGN

Fig. 9. Qualitative results of the ablation study on the ShaTure Block for
different poses (a-d). Please zoom in for more details.

provide significant contribution on the overall vividness of the
generated images.

In addition to a sharp shape, the texture appearance is
another significant factor during the reconstruction process.
From the statistics in Table IV, the full model can obtain
2-3% improvement for the FID and IS score. By inspection
on the images, it is clear that the distribution of strips on the
skits and the color of T-shirt in Figure 9(c-d) are different
from the source images. We also compare the settings with
similar parameters in Parallel design – All Shape Module
where the increment on evaluation metrics is also obvious.
On the other hand, the full model can well preserve the texture
completeness with higher fidelity. It verifies the functionality
of the Texture Module inside the ShaTure Block as well.

The formulation of the spatial transformation net-
work (STN) inside the Texture Module is also an impor-
tant element to generate plausible texture of the garments.
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TABLE V

QUANTITATIVE RESULT OF ABLATION STUDY ON DIFFERENT VARIANTS
OF ADAPTIVE STYLE SELECTOR MODULE

The objective of the STN is to provide the affine transfor-
mation matrix to warp the source attributes to the target
position based on the transformation relationship. Based on the
decrements of IS and SSIM score of setting W/o STN, we can
observe that the attributes should be spatially aligned with the
target pose in order to mimic the texture characteristics. The
setting Shared STN in Block illustrates that an independent
STN for each Texture Module is more effective than the setting
with a dependent STN. We believe that some little variations
of transformation are sensitive to the evaluation metrics while
it is hard to be identified by inspection.

b) Parallel design vs. cascaded design: The objective of
twisting the Shape Module and Texture Module in a parallelly
braiding manner is to exchange discriminative features for
both feature-level space and pixel-level space. It enables
3-4% enhancement on the IS and FID score for our module.
By visualizing the generated images, it has as many artifacts
as the model w/o ShaTure Module shown in Figure 9(a-b).
It shows that such braiding operation is effective on synthe-
sizing photo-realistic images.

We provide a testing on the hyper-parameters of the num-
bers of braiding blocks. We observe that 2 braiding blocks
are the optimal choice with satisfactory results and efficiency.
Since there are only 2 modules needed to be braided, the com-
bination of 4 modules inside a ShaTure Block is reasonable
to fulfill the fine-tuning purpose.

Apart from a parallelly braiding design, we also evaluate
the performance of the Shature Decoder using a sequentially
cascaded design in each ShaTure Block. As illustrated in the
Table IV, the parallelly braiding design is superior to all kinds
of cascaded design. In general, the cascaded design is able
to obtain satisfactory results in SSIM and LPIPS metrics but
improvement of IS and FID scores is required. It represents the
great fine-tuning ability of overall generation for the parallelly
braiding design helps strike a balance between the shape and
texture synthesis.

2) Analysis on Adaptive Style Selector Module: The motiva-
tion of the AdaSS Module is to adaptively extract multi-scale
features from the source style by emphasizing cross-channel
correspondence. As illustrated in Table V and Figure 10, the
AdaSS Module has the merit of producing an accurate shape
and a plausible texture appearance. The details of the settings
are described as follows:

Fig. 10. Qualitative results of the ablation study on the Adaptive Style
Selector Module for different poses (a-d). Please zoom in for more details.

a) W/o rate #: We decouple the size of the receptive field
of view into different combinations. We believe that the larger
the receptive field of view is set, the more local informative
representation the network can get. From the numerical result
of experiment, the overall performance of the network is
increased from 1-12% with fewer artifacts when the receptive
field of view is enlarged to 7. It verifies that a larger kernel
size is able to provide positive gains to the pose transfer.

b) W/o shared gate: The objective of the shared gate is
to dynamically enforce channel-wise correspondence to the
style codes. It can also obtain 1-4% enhancement for the
IS and FID score. Visually, the images generated from this
setting have the worst shape such as Figure 10(d) which cannot
produce a reasonable skirt. It shows that the shared gate can
provide positive effect to network, especially in terms of shape
reconstruction.

c) W/o DW & with group # Conv: As discussed in [37],
[38], the objective of the depth-wise/group separable convo-
lution is to reduce the number of parameters by partitioning
convolution into a depth-wise kernel and a point-wise kernel.
Apart from the network optimization, it indicates that there are
3-6% increments for the IS and FID scores as well. It proves
the efficacy of the gated/grouped convolution in the AdaSS
Module.

d) U-net architecture: In this setting, we investigate the
effectiveness of the source of style codes. Instead of extracting
multi-scale style features at the end of the Style Encoder,
we can utilize the features of different resolutions in the
implementation similar to the architecture of U-Net [36].
However, the performance is obviously inferior to some extent
in all the evaluation metrics. It is because there is no consistent
contextual information to generally represent the style codes
inside the shallow layers. On the other hand, our AdaSS
Module can effectively formulate the multi-scale style codes
from a consistent feature space by self-recalibrating the same
feature source through channel-wise attention.

F. Feature Map Visualization

To illustrate the role of the Shape Module and Texture
Module in the ShaTure Block, we provide some visualizations
of warped attributes and feature maps in Figure 11. Although
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Fig. 11. Visualization of some warped attributes of Texture Module and shape features of Shape Module in ShaTure Block. For the Texture Module, we
utilize the affine transform matrix in the module to warp the source attributes so that it can clearly show the effectiveness of the spatial transformation. The
visualization of feature maps in Shape Module can demonstrate the generation process of target shape. All images and features are bilinearly scaled to final
generation resolution where Block1 is the lowest resolution and Block5 is the highest. We demonstrate different angles of view including front (a-b), back
(c) and slide (d) view. Please zoom in for more details.

there are two Shape Modules and Texture Modules in a
ShaTure Block, we observe that there is no obvious visual
difference between them. Therefore, we pick the first unit as
the sampled module. Due to different resolutions for each
block, we use bilinearly up-sampling method to resize the
images for visualization purpose.

We provide the feature maps to demonstrate the density
distribution for Shape Module. We generate the density map
by summing the produced output features across channel
dimension. It is obvious that the feature maps can represent
the contours of target shape generated from coarse to fine
fashion. For Texture Module, we show some warped attributes
according to the affine transform matrix so that the ability of
texture alignment and generation is illustrated. Although the
visual quality of warped features is degraded due to bilinearly
down-sampling operation, we can clearly distinguish the dif-
ference of warped attributes after the affine transformation.
Since there is an independent spatial transformation network
inside the Texture Module, the spatial transformation is also
invariant to each ShaTure Block as well.

Based on the visualization of the ShaTure Block, we can
observe that the disentanglement between the shape and tex-
ture information is effectively aligned with our theoretical
principle. The evolution of Shape Module indicates that the
network can globally synthesize the overall shape in lower
resolution stage while refining the details on the human parts
in higher resolution stage. We believe that it is the contribution
of Shape Decoder to provide semantic signals to preserve
the reconstruction of human-body shape. On the other hand,
the distorted high frequency signals can be maintained by
Texture Module. The texture patterns are spatially sensitive to
spatial locations. Corresponding spatial texture features can be

Fig. 12. Visualization of some pose transfer results on in-the-wild images.
The images (a-f) are inferenced directly by the model pre-trained on Deep-
Fashion dataset instead of training from scratch.

captured by spatially adaptive modulation operation. With the
aligned shape and texture features, we can produce plausible
images effectively.

G. In-the-Wild Pose Transfer

Producing high-fidelity pose transfer results for in-the-wild
images is an interesting application for both academic and
industry practitioners. Due to limited high-quality training
dataset for paired human images, we use the pre-trained model
on DeepFashion to perform inference on some randomly
selected images from a human parsing dataset – ATR [53].
In Figure 12, It is observed that most of the images can
successfully perform pose transfer with natural shapes and
vivid texture compared with the source images. Since there
is limitation of DeepFashion dataset on background transfer,
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it is normal that the backgrounds of the generated images are
highly similar to the style DeepFashion. We believe that this
limitation can be alleviated when the training samples include
in-the-wild settings.

V. FUTURE WORK

To achieve efficient pose and attributes transfer results in
multi-terminal scenario, it is suggested to combine our method
with video coding for machine (VCM) [54] techniques and
lossless compression for key-point sequence [55] to jointly
encode and transmit the massive visual data (images) and
semantic data (skeleton, attributes) among devices. Through
collaborative compression with feedback mechanism [54] and
adaptive selection of prediction modes to minimize spatial and
temporal redundancies [55], it can overcome the computational
limitation for developing real-time style-transfer products.

VI. CONCLUSION

In conclusion, we propose a novel end-to-end framework
to accomplish the task of human pose and attribute transfer.
There are two main contributions of the suggested network
architecture including the ShaTure Block and Adaptive Style
Selector (AdaSS) Module. The goal of the ShaTure Block is
to solve the problem of spatial misalignment by decoupling
style codes and warped texture representation in a braiding
manner. It can interchange discriminative features in both
feature-level space and pixel-level space. We further propose
an AdaSS Module to enhance the multi-scale feature extraction
capability through channel-wise attention with dynamical self-
recalibration of the feature maps. By emphasizing the aggre-
gation of cross-channel correspondences with a larger field
of view, the network can allocate the attention to the most
appropriate style features to the corresponding reconstruction
layers. Both quantitative and qualitative experimental results
prove the effectiveness of the suggested ShaTure Block and
AdaSS Module. The proposed framework can also achieve the
state-of-the-art performance in all metrics which demonstrates
the promising robustness and generality in the task of human
pose and attribute transfer.
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