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A B S T R A C T   

With the rapid development of the convolutional neural network, both instance segmentation and semantic 
segmentation have achieved remarkable performances. Recently, many efforts have been made to use a unified 
Encoder-Decoder architecture to solve these two segmentation tasks simultaneously. The encoder extracts high- 
level features from the input images for both tasks. However, existing decoders cannot meet the performance 
requirements of these two tasks: the semantic segmentation decoder is not flexible enough for instance seg
mentation, and the instance segmentation decoder lacks the precision of semantic segmentation. Therefore, we 
introduce a novel Pixel Voting Decoder to satisfy both precision and flexibility. The proposed decoder regresses 
the interlayer pixel relationships between the input and output feature maps across the convolutional layers. 
Then, the pixel relationships are regarded as the pixel votes for dynamically decoding the higher level infor
mation from the encoder. Finally, we propose the dynamic deconvolution to make full use of the votes for each 
pixel during the decoding process. Meanwhile, the matrix computation for the dynamic deconvolution is 
designed to boost the calculation. Experiments show that the proposed method can achieve better performance 
than the well-known methods on both instance segmentation on the COCO dataset and semantic segmentation on 
the Cityscapes dataset. The matrix implementation of the dynamic deconvolution also shows its high efficiency 
and feasibility.   

1. Introduction 

IMAGE segmentation task aims to partition the digital images into 
multiple meaningful subregions and classify them. It mainly includes 
two sub-tasks: instance segmentation (Hafiz and Bhat, 2020) and se
mantic segmentation (Lateef and Ruichek, 2019). Instance segmentation 
firstly detects each object in the image, then marks the pixels occupied 
by each object with a label as the segmentation result. Semantic seg
mentation classifies all the pixels in the image, and the classification 
marks of each pixel constitute the segmentation result. Instance seg
mentation can distinguish different objects in the same category, but it 
does not mark pixels in regions where no objects are detected. For 
example, as shown in the left part of Fig. 1, dogs in the image will be 
marked with different labels, while the pixels with no object covered 
will not be labeled. On the contrary, semantic segmentation provides a 
label for each pixel but cannot distinguish between different instances. 
In other words, the pixels of two nearby dogs are all marked with the 

same “dog” label in semantic segmentation, and it cannot separate the 
dogs from each other by the semantic segmentation masks, as shown in 
the right part of Fig. 1. 

Due to the rapid development of the convolutional neural networks, 
when using the Encoder-Decoder (Badrinarayanan et al., 2017) neural 
network with different network designs, both segmentation tasks now 
have much better performance than traditional image processing 
methods. In recent years, some efforts (Kirillov et al., 2019; Xiong et al., 
2019; Cheng et al., 2020:) have tried to use a general Encoder-Decoder 
architecture to perform both semantic segmentation and instance seg
mentation at the same time. However, it is difficult to perform these two 
segmentation tasks using the same framework. So far, the existing en
coders can be easily shared for both tasks, e.g., a pre-trained ResNet-50 
(He, 2016), while the existing decoders are difficult to achieve good 
performances on these two tasks simultaneously. 

On the one hand, the design of existing decoders can achieve 
excellent performance in the areas they target. The existing semantic 
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segmentation decoders can generate high precision segmentation re
sults. These decoders are usually designed based on the feature fusion 
pyramid (Long et al., 2015). Full scales of feature maps are enlarged and 
added together down along the feature pyramid. Each feature level in 
the encoder is delivered to the corresponding decoding entrance of the 
pyramid. This design implicitly requires 3 factors that are hard for 
instance segmentation to satisfy. 1. The decoder should receive all levels 
of the feature maps from the encoder; 2. The pixels across the decoding 
convolutional layers should be aligned with similar patterns in the 
encoder; 3. Each feature map from the encoder should be fed into the 
specific decoder entrance to match the corresponding parameters. The 
existing instance segmentation decoders can achieve the flexibility to 
process different kinds of masks. These decoders are always designed as 
the downstream of object detections, they employ a simple fully con
volutional network to decode single-level features. Similarly, this design 
also compromises 2 implicit limitations that prevent the existing se
mantic segmentation decoders from organizing multi-level features with 
the pyramid. 1. The objects are detected from different feature levels, so, 
the relative feature maps are not suitable for a pyramid for some 
detected objects. 2. The objects are detected at different positions on a 
feature map, making it difficult to align features at adjacent levels. The 
instance segmentation decoders choose to decode based on single-level 
features, making it flexible enough to process all kinds of detected 
objects. 

On the other hand, the existing decoders cannot meet the flexibility 
and precision requirements at the same time. The existing semantic 
segmentation decoders perform poorly on organizing all kinds of fea

tures for the detected objects. That is because the feature fusion pyramid 
is only suitable for few objects that are detected at specific positions. 
Directly feeding the features into the pyramid may cause non- 
convergence problems due to the mismatch of features and parame
ters. The existing instance segmentation decoders can hardly achieve 
high precision because the decoding is only based on a single feature 
level. Besides, the fully convolutional network emits very small sizes of 
features. For example, Mask R-CNN (He, 2017), the most famous 
instance segmentation solution, produces segmentation masks with only 
14× 14 sizes, then directly interpolates them up to the same sizes of the 
original images, 1333× 800, which will lose lots of precision. 

In order to address the above problems, we propose a novel decoder, 
namely Pixel Voting Decoder. It simulates the pixel relationships be
tween two feature maps across a convolutional block in the encoding 
process, then makes use of these pixel relationships to decode the feature 
maps and obtain the segmentation masks. The pixel relationships record 
how pixels in a feature level are related to the pixels across the con
volutional layers. By utilizing the pixel relationships, pixels at different 
levels can be tracked and aligned, all levels of the feature maps can be 
employed and organized, the flexibility and precision can be achieved at 
the same time. Usually, each pixel is related to multiple pixels, we call 
the process that multiple relative pixels are summed weighted by the 
pixel relationships as pixel voting. 

Similar to most of the encoder-decoder architecture, the Pixel Voting 
Decoder also iteratively uses the repeated basic block, as demonstrated 
in Fig. 2. The repeated block can be divided into 2 parts: the pixel as
sociation module and the dynamic deconvolution module. The pixel 

Fig. 1. Comparison of instance segmentation (left) and semantic segmentation (right). Instance segmentation can distinguish different dogs in the same category and 
labels are only assigned to the pixels within the detected objects. Semantic segmentation can assign a label for every pixel. 

Fig. 2. The overview of the Pixel Voting Decoder, which is based on the encoder-decoder architecture. Both the encoder and the decoder consist of iterative basic 
blocks. The major contributions are in the basic blocks. Take a basic block as an example, the input feature passes through a residual block and obtains the output 
feature. Then, the input and output features are concatenated and convolved with 1× 1 convolutional layer to regress the pixel association degrees. For decoding, the 
output feature and the upper level’s decoded input are concatenated and fed into the dynamic deconvolution module to obtain the decoded feature map. The marks 
Hi and Wi refer to the input feature map height and width sizes, while Ho and Wo refer to the output map size. Ci and Co denotes the channel number of input and 
output. Cobj denote the number of detected objects for the instance segmentation or the number of categories for semantic segmentation. 
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association module is designed to simulate the pixel relationships and 
regress the pixel association degrees across the convolutional layers. The 
dynamic deconvolution module utilizes the pixel association degrees to 
deliver the higher-level features to the lower level and fuse the features 
to generate segmentation masks. Because the traditional deconvolution 
is not suitable for the pixel voting scheme, we propose the dynamic 
deconvolution and design the matrix computation to boost the 
calculation. 

We evaluate the proposed Pixel Voting Decoder for semantic seg
mentation and instance segmentation tasks on the Cityscapes dataset 
and the COCO dataset, respectively. Compared with the previous pipe
lines (Chen, et al., 1706; He, 2017), the proposed decoder has better 
performance than the popular methods on both tasks. In addition, we 
also visualized some samples on the Cityscapes and COCO datasets. In 
summary, the main contributions of this paper are as follows:  

(1) This paper reveals the observation that the existing decoders 
cannot satisfy the instance segmentation and semantic segmen
tation tasks at the same time.  

(2) We propose a network Pixel Voting Decoder. It can achieve good 
performance for these two segmentation tasks. It regresses the 
pixel relationships across the convolutional layers, then uses the 
pixel relationships to obtain better segmentations.  

(3) We propose the dynamic deconvolution. It makes full use of the 
pixel relationships to fuse and decode the features. It dynamically 
deconvolves the features and uses the pixel relationships as the 
kernel weights.  

(4) We implemented the matrix computation of the dynamic 
deconvolution to increase the calculation speed and reduce the 
memory cost.  

(5) We evaluated the proposed Pixel Voting Decoder for semantic 
segmentation and instance segmentation tasks. Then compare it 
with well-known methods to demonstrate that better perfor
mance can be obtained. 

Fig. 3. The overview of the Pixel Voting Decoder. (a) illustrates a typical residual block of the ResNet-50, where Ci and Corefer to the channel number of the input 
and output maps, 7× 7, 4× 4 indicates the example feature map sizes, the stride equals 2. Residual blocks are repeatedly employed to reduce the feature map size 
and produce high-dimension features level by level. A residual block receives an input feature map A and convolves for 3 layers with 1× 1, 3× 3, 1× 1 kernels in 
sequence. The convolution result is elementally added to map A with a bypass 1× 1 convolution to fit the feature size and channel number. The added result serves as 
the residual block’s output feature map B. (b) demonstrates the pixel association module based on a residual block. The input and output feature map A and B of the 
residual block are concatenated after a 1× 1 convolution respectively, the concatenated feature map produces the pixel association degrees (a 9-channel tensor) 
using a convolution layer for regression. (c) illustrates a typical 3× 3 kernel deconvolution operation with stride 2. Take 2 pixels in the input feature map as ex
amples, in deconvolution, the pixels at different locations elementally multiply with the shared 3× 3 weights, the 3× 3 result pixels are added to the corresponding 
locations in the output feature map. (d) demonstrates the dynamic deconvolution module, the decoder part of the network, from overview and detail view, 
respectively. The left part is from the overview. The output feature map B from the corresponding residual block is concatenated with the output decoded feature map 
C of the upper-level residual block’s decoder part, forming a fused feature map M, then processed by the dynamic deconvolution, the output decoded feature map D is 
obtained. The right part is from a detail view. The dynamic deconvolution is similar to the typical deconvolution, except that it abandons shared weights, instead, it 
employs the 9 values at the corresponding pixel in the pixel association degrees to serve as the deconvolution weights. 
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2. Related works 

2.1. The encoder – Decoder architecture 

The Encoder-Decoder framework (Badrinarayanan et al., 2017) is 
widely used for image segmentation tasks. The framework contains two 
functional modules: the encoder and the decoder. The encoder, repre
sented by an encoding function z = f(x), down-samples the input image 
into high-dimensional latent-space feature maps through convolutional 
layers level by level, thereby reducing the feature map, increasing the 
channel number, and generating the high-dimensional feature maps are 
generated. The encoder usually emits 4 layers of feature maps, 
customarily marked from level 2 to level 5. The higher the level, the 
smaller the feature map and the more macroscopic information the 
feature map contains. Widely used encoders include: AlexNet (Kriz
hevsky et al., 2012), VGGNet (Simonyan and Zisserman, 2014), ResNet 
(He, 2016), GoogLeNet (Szegedy et al., 2015), MobileNet (Howard et al., 
1704), and DenseNet (Huang et al., 2017), etc. 

The purpose of the decoder, y = g(z), aims to up-sample the decoded 
output feature map from the adjacent higher-level residual block uti
lizing deconvolution (Noh et al., 2015) or unpooling (Škrabánek, 2016), 
then aggregate the expanded feather map with the corresponding level’s 
feather map from the encoder. Long et al. (Long et al., 2015) firstly 
proposed to up-sample the higher-level feature maps and aggregate 
them with the lower features using a fully convolutional network (FCN). 
FCN up-samples the feature maps by means of direct bilinear interpo
lation. On the contrary, Badrinarayanan et al. (Badrinarayanan et al., 
2017) proposed the SegNet to replace the interpolation with unpooling. 
The SegNet uses pooling indices from the max-pooling step in the 
encoder to perform non-linear up-sampling. Ronneberger et al. (2015) 
proposed the U-Net, which provides a symmetric up-sampling decoder 
to the encoder so that the decoder can make full use of all levels of 
feature maps. Zhao et al. (Zhao, 2017) developed the Pyramid Scene 
Parsing Network (PSPNet), a multi-scale network to better learn the 
global context representation of a scene. Chen et al. (Noh et al., 2015; 
Chen et al., 1412; Chen et al., 2017) proposed the DeepLab series by 
employing the dilated convolution on the hidden features to improve the 
performance. The decoders stated above are mostly employed in se
mantic segmentation tasks. As for instance segmentation, He et al. (He, 
2017) proposed Mask R-CNN, whose decoder can align the arbitrary size 
of cropped features into a unified size 14× 14, so as to satisfy the 
flexibility requirement of instance segmentation. 

2.2. Instance segmentation and semantic segmentation 

The networks of instance segmentation and semantic segmentation, 
especially the decoder parts, are designed based on very different ideas. 
Semantic segmentation methods mainly focus on increasing the 
perception of hidden features: Zhao, et al. (Zhao, 2017) perform spatial 
pyramid pooling at several grid scales and improves the precision. Chen 
et al. (Chen et al., 1412) and Dai et al. (Dai, 2017) enlarge the perceptual 
fields for the convolutional kernels by introducing the dilated convo
lution and deformable kernels. Instance segmentation mainly extends 
the Mask R-CNN (He, 2017) to improve the performance. Bolya et al. 
(Bolya et al., 2019:) proposed the YOLACT to further crop and assemble 
the object masks to improve the Intersection over Union (IoU) perfor
mance. Huang et al. (Huang et al., 2019:) proposed to add an extra mask 
IoU for calculating the loss which improves the IoU performance. 
Recently, Kirillov et al. proposed another subtask, the panoptic seg
mentation, to solve both instance segmentation and semantic segmen
tation tasks using the same network. Many works (Xiong et al., 2019:; 
Cheng et al., 2020:) tried to solve this novel task using the encoder- 
decoder architecture. They employ the same encoder for extracting 
the features, however, they promise to use different decoders to deal 
with the two tasks. 

2.3. Deconvolutions 

The deconvolution, a.k.a. the transposed convolution, aims to swap 
the forward and backward passes of a convolution (Zeiler, 2010), which 
is always used to restore the feature size of a feature map that has passed 
through a convolution. Zeiler et al. (Zeiler et al., 2011) first proposed the 
deconvolution networks. Noh et al. (2015) proposed that deconvolution 
is a mirrored version of the convolution, which associates a single input 
activation with multiple outputs. Vincent et al. (Zeiler, 2010) employ a 
set of the shared kernel weights to sweep over the input feature map, 
each pixel is multiplied with the elements in the kernel, the kernel 
products are then summed up according to their pixel positions. As far as 
we know, the existing deconvolutions all use the shared kernel during 
the sweeping process. 

3. Pixel Voting Decoder 

3.1. Problem formulation 

The encoder-decoder architecture is widely used in segmentation 
tasks, and our network also employs this architecture. As shown in Fig. 3 
(a), the encoder uses the residual block to perform a level-by-level down- 
sampling operation, it reduces the feature map size and generates high- 
dimensional feature maps. The higher the level, the more comprehen
sive the extracted image features, and the smaller the size of the feature 
map. Symmetrical to the encoder, the decoder, shown in Fig. 3 (d), 
performs a level-by-level up-sampling operation. The encoder-decoder 
runs based on the repeated basic blocks. The residual blocks are the 
repeated basic blocks of the encoder, and similarly, the dynamic 
deconvolution module is the repeated basic block of the decoder. The 
residual block receives the input feature map A and sends out an output 
feature map B. Then, the dynamic deconvolution module receives the 
map B and the feature map C, and generates the decoded feature map D. 
Map C is the decoded feature map from the decoder of the upper-level 
residual block. Map B and map C have the same feature map size, 
meanwhile, map A and map D have the same feature map size. Suppose 
map C contains the higher-level coarse segmentation information, the 
decoder can accurately propagate it to the finer-segmented map D of 
larger sizes. 

In detail, as shown in Fig. 3, the residual block is sequentially 
convolved in 3 layers with 1× 1, k× k, 1× 1 kernels on the input feature 
map A. The convolution result is elementally added to feature map A 
with a bypass 1× 1 convolution to fit the feature size and the number of 
channels. The added result is served as the output feature map B. Note 
that k refers to the kernel size of the middle convolutional layer, 
generally k = 3. Then, the feature map A and B are concatenated after a 
1× 1 convolution, and a convolutional layer is used to regress the 
concatenated feature map into the pixel association degrees. The dy
namic deconvolution module receives the decoded feature map C from 
the upper module, then aggregates it with the output feature map B from 
the corresponding level residual block in the encoder. Feature maps C 
and B are concatenated as the input of the dynamic deconvolution. The 
dynamic deconvolution is parameterized by the pixel association de
gree, and the decoded feature map D of the current module is sent out. 
Repeat this process level by level, and finally, the bottom up-sampling 
feature map will act as the final output segmentation masks. The pro
cess described above can be expressed by 

Z = Enc(X) (1)  

Y = Dec(Z) (2)  

where X,Y, Z represent the original input image, the final output seg
mentation masks, and the embedded feature maps, respectively. More
over, Enc and Dec represent the encoder and the decoder, respectively. In 
our case, the Enc is exactly the backbone of ResNet-50 (He, 2016). 
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The encoder and decoder are designed in an iterative approach, and 
the details of (1) and (2) can be expressed by iterative formulas. From a 
detail point of view, the encoder consists of several repeated residual 
blocks. If the total level number is L, we have 

zl+1 = resl(zl)

Z = {z1,⋯, zL} (3)  

where l ∈ 0,⋯, L − 1 denotes the level index in the encoder, resl repre
sents the lth level residual block, zl and zl+1 represent the extracted 
hidden feature maps. For each residual block, zl+1 denotes the output 
feature map B, while zl refers to the input feature map A, which is also 
the output feature map B of the l − 1th level residual block. We define z0 
as the original input image X. The embedded feature maps Z contains all 
of the encoder’s output feature maps from z1 to zL. 

The dynamic deconvolution module receives two inputs and pro
duces one output. The iterative decoding process can be expressed as 

yl = dydl(yl+1, zl+1) (4)  

where dydl denotes the lth level dynamic deconvolution module, yl 
represents the output decoded feature map of the current level, which is 
expressed as the map D in Fig. 3, while yl+1 represents the upper-level 
output decoded feature map. At the top level, there is no upper level, 
so we define yL = zL. The output segmentation mask Y is exactly y0. By 
introducing the above iterative representations, we have formalized an 
encoder-decoder network. The entire network can be divided into 
several repeated blocks, including the two modules. The pixel associa
tion module corresponds to equation (3) and the dynamic deconvolution 
module corresponds to equation (4). Both of these modules act as iter
ators, so they will be reused at all levels. 

3.2. The pixel association regression 

The primary task of Pixel Voting Decoder is to model the pixel voting 
relationship between layers, based on this setting, it is important to 
regress the pixel association degrees firstly for each level. The pixel as
sociation module is designed based on the residual block because the 
residual block is widely used in the cutting-edge encoders (Peng, 2019; 
Szegedy et al., 2015; Howard et al., 1704; Huang et al., 2017). Also, it 
meets the iterative repeating design described in formula (3) very well. 
Fig. 3 (a) illustrates the residual block of ResNet-50, where Ci and 
Corefer to the channel number of the input and output maps, 7× 7 and 
4× 4 indicates the example feature map sizes, the stride is 2. The re
sidual blocks are repeatedly employed to reduce the feature map size 
and produce high-dimensional features level by level. For each residual 
block, there is only one convolutional layer whose kernel size k is larger 
than 1. So, depending on the middle convolutional layer kernel size k, 
each pixel in map A is only associated with no more than n = k2 pixels in 
map B. 

Based on the above observations, the Pixel Voting Decoder regresses 
the pixel association degrees between map A and map B. As demon
strated in Fig. 3 (b), the regression is conducted in the pixel association 
module. After convolving both maps with a 1× 1 kernel respectively, 
the module concatenates the input map A and output map B across the 
residual block, then employs a convolutional layer to regress the asso
ciation degrees from each pixel in map B to n pixels in map A. The 
regressed pixel association degrees record the pixel voting relationships, 
which play a key role in the successive dynamic deconvolution module. 

Here is a demonstration to make the network flow easier to under
stand, by means of following the above process from the perspective of a 
tensor. Suppose a tensor with size Ci × 7× 7, where Ci denotes the 
channel number, is the input feature map A of a residual block. The 
stride of the residual block is 2, the middle convolutional layer kernel 
size k is 3, so, after 3 stacks of convolutional layers, a bypass convolu
tion, and the elementary sum in the residual block, we get an output 

feature map B, a tensor with size Co× 4× 4. Map B is the basic output of 
the residual block in the ResNet backbone. Then, the tensors map A and 
map B are processed with a kernel 1× 1 convolutional layer respec
tively. Note that the convolution for map A is configured as the same 
stride as the residual block, which means after the convolution, the new 
map A has a size of Ci× 4× 4, the new map B is still in size of Co× 4× 4. 
Both the new map A and B are concatenated into a tensor with size 
(Ci + Co)× 4× 4. The concatenated tensor is then convolved to obtain 
the result tensor with a size of n× 4× 4, which is the pixel association 
degrees. For the case of k = 3, n = 9. So, there are n values at each pixel, 
they represent the dynamic kernel weights at each pixel position in the 
deconvolution sweeping process. 

3.3. The dynamic deconvolution 

The dynamic deconvolution module is modified based on the tradi
tional deconvolution (Mohammadi et al., 2016) operation to satisfy the 
requirement of our task. The typical deconvolution is the inverse oper
ation of the convolution (Mohammadi et al., 2016). The convolution 
operation extracts the features from several pixels of the input map using 
a kernel filter and emits an output pixel. On the contrary, deconvolution 
associates one input pixel with several output pixels. Both the convo
lution and deconvolution operations are parameterized by a shared filter 
kernel. That is, during the kernel sweeping process, the kernel weights 
remain the same all over the feature map. Fig. 3 (c) illustrates a typical 
3× 3 kernel deconvolution operation with stride 2. Take 2 pixels in the 
input feature map as examples, in deconvolution, the pixels at different 
locations elementally multiply with the shared 3× 3 weights, the 3× 3 
multiplication results are added to the corresponding pixel locations in 
the output feature map. The stride scheme in the deconvolution is 
similar to that in the convolution. In this way, each pixel in the input 
feature map is associated with n pixels in the output feature map. 

However, in the deconvolution, the setting of sharing weight all over 
the feature map is unreasonable in our case, because the interlayer pixel 
relationships are different as the image content are changing during the 
deconvolution kernel sweeping process. To address this problem, the 
Pixel Voting Decoder proposes the dynamic deconvolution. That is, 
when the kernel sweeps over the feature map, at each pixel, there would 
be a set of unique weights in the kernel, the pixel association degrees at 
that position would act as the unique weights. We call this process the 
dynamic deconvolution. Fig. 3 (d) illustrates the decoder using the pixel 
association degrees and the dynamic deconvolution from the overall 
view and detail view. The left part is from the overview. The output 
feature map B from the corresponding residual block is concatenated 
with the output decoded feature map C from the (l+ 1)th level residual 
block’s decoder. Then the concatenated feature maps are fused with a 
1× 1 convolutional layer, emitting the fused feature map M, afterward, 
processed by the dynamic deconvolution module, the output decoded 
feature map D is obtained. The right part is from the detail view. The 
dynamic deconvolution is similar to the typical deconvolution, except 
that it employs the pixel association degrees instead of shared weights as 
the deconvolution parameters. The pixel association degrees are orga
nized as a n-channel tensor, which has the same map size as the map B, 
so, each pixel in the degree tensor contains n values, these n values in a 
pixel are reshaped into a k× k tensor and play the role of the dynamic 
deconvolution kernel weight. Then, the dynamic deconvolution can 
perform like a typical deconvolution operation to sweep all over the 
feature map with specific strides. 

Follow the demonstration in the previous section, the network flow 
for the dynamic deconvolution module is described below. Two of the 
inputs for the dynamic deconvolution decoding, the output feature map 
B of the residual block and the regressed pixel association degrees, have 
been obtained. Another input is the feature map C with a size of Cobj×

4× 4, which is actually the decoded output D from the l+ 1th level re
sidual block’s decoder, where Cobj denotes the tensor channel number, 
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which equals to the number of detected objects in instance segmentation 
or the number of categories in semantic segmentation. The feature maps 
B and C are concatenated into a tensor with size (Co + Cobj)× 4× 4, then 
fused using an 1× 1 convolutional layer into a Cobj × 4× 4 tensor, 
which is the input of the dynamic deconvolution. The dynamic decon
volution employs the pixel association degrees (n× 4× 4) as the 
deconvolution kernel weights, then emits the decoded feature map D 
with a size of Cobj× 7× 7, which is the same map size as the input feature 
map A of the residual block. In detail, the pixel association degrees are 
transformed into k× k× 4× 4, at each pixel position during the 
deconvolution, there is a k× k filter that plays the role of deconvolution 
kernel. Note that map D also plays the role of input feature map C for the 
decoder of the (l − 1)th level residual block. The decoding process is 
conducted level by level, residual block by residual block, at the bottom 
level (l = 0), the decoded map D is just the segmentation mask. 

3.4. Acceleration: The matrix solution for the dynamic deconvolution 

There is a problem in the deconvolution process. If the kernel 
weights are updated at every stop during the deconvolution kernel 
sweeping process, it will be very slow. The Pixel Voting Decoder turns to 
matrix operations to achieve fast and efficient implementation. Consider 
two typical strides: stride of 1 and stride of 2. We have designed the 
matrix computations for these two types of dynamic deconvolution. 

Before demonstrating the matrix computation, we first analyze the 
pixel-level dynamic deconvolution module in detail. After concatenating 
the output feature map B of the residual block and the (l+ 1)th level 
decoded feature map C, the 1× 1 convolution will mix the channel 
number into Cobj, and then obtain the fused feature map M ∈ RCobj×Ho×Wo 

as the input of the dynamic deconvolution. The regressed pixel associ
ation degrees act as the interlayer pixel voting map V ∈ Rk2×Ho×Wo , 
which provides the values of the k× k kernel for each pixel position 
during the deconvolution sweeping process. As shown in the detail view 
of Fig. 3 (d), for each pixel Mi,j∈ RCobj in the feature map M, there are k2 

votes Vi,j∈ Rk2 at the corresponding pixel position in the feature map V. 
These votes are reshaped into a k× k kernel V̇i,j∈ Rk×k and multiplied 
with Mi,j by broadcasting to obtain the single pixel voting result 

Si,j∈ RCobj×k×k, which can be expressed as 

Si,j = Mi,j
◦V̇i,j (5)  

where ◦ denotes the Hadamard product. The center of Si,j is located at (i,
j), covering k2 pixels from (i − k

2, j −
k
2) to (i + k

2,j +
k
2), if indivisible, it will 

be rounded. The size mismatch between Mi,j and V̇i,j can be resolved by 
the broadcast mechanism. In detail, Mi,j is reshaped into Cobj× 1× 1, V̇i,j 

is reshaped into 1× k× k, and the product Si,j has a shape of Cobj× k× k. 
The single pixel voting results {Si,j} are added up with overlapping. 

In the dynamic deconvolution, the above process is conducted on each 
pixel by sweeping all over the feature map M, combining the deconvo
lution stride settings, the output feature map size is the same as the input 
feature map A of the residual block. Therefore, the decoded result of the 
lth level is the overlapping sum D ∈ RCobj×Hi×Wi , we have 

D =
∑

0 ≤ i < Ho

0 ≤ j < Wo

Si,j =
∑

0 ≤ i < Ho

0 ≤ j < Wo

Mi,j
◦V̇ i,j

(6) 

It is worth noting that the output feature size may change because of 
the stride, which is the same as the stride of the residual block, so that 
the feature size of feature map D is Hi ×Wi instead of Ho× Wo. For the 
case of stride = 1, the computation is simple. To better understand the 
overlapping sum, there is no harm in giving an example. Let k = 3,then, 
there are 9 pixels in the single pixel voting result Si,j. As shown in Fig. 3 
(d), we can number the pixels in Si,j with 1–9, the 3× 3 voting results {
Si,j} are overlapped with each other. For each pixel Di,j of the sum result, 
there are also 9 values from 9 voting results. Considering the over
lapping bias, we have 

Di,j = S9
i− 1,j− 1+ S8

i− 1,j+ S7
i− 1,j+1  

+ S6
i,j− 1+ S5

i,j+ S4
i,j+1  

+S3
i+1,j− 1 + S2

i+1,j + S1
i+1,j+1 (7)  

where Sn
i,j refers to the value at a certain relative pixel position in the 3×

3 voting result, and its center is at (i,j). For example, S9
i,j refers to the top 

Fig. 4. Demonstration of the process of matrix approach for Pixel Voting Decoder in case of stride = 1. The votes map V (a.k.a. the pixel association degrees) is 
scattered into k2 per-channel vote maps {Vn} over the channel dimension. The per-channel maps {Vn} are shifted few pixels towards different directions and summed 
up pixelwise. The sum is then cropped the padding area and elementwise multiplied with the map M to obtain the decoded output feature map D. 
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left value, while S9
i,j is the value of the bottom right value, and so on. 

Note that {Si,j} cannot be represented as a feature map, because {Si,j}

is a collection of 3× 3 maps rather that single pixel values. However, {
Sn

i,j} can be represented as a feature map Sn ∈ RCobj×Ho×Wo , and we have 

Sn = {Sn
i,j} = M◦{V̇n

i,j} = M◦V̇n
= M◦Vn (8)  

where V̇n
i,j denotes the value at the corresponding relative pixel of the 

kernel V̇i,j, {V̇
n
i,j} denotes the collection of V̇n

i,j, V̇
n
= {V̇n

i,j} ∈ RHo×Wo de
notes the reconstructed map of the n-position pixels. Vn denotes the nth 

channel feature map of V. For broadcasting, similarly, the V̇n
,Vn ∈

RHo×Wo are reshaped into 1× Ho× Wo. 
Inspired by equations (7) and (8), it is easy to find that Di,j is the sum 

of the pixel-shifted version of the nearby voting result maps {Sn}. In 
addition, Di,j can represent the arbitrary pixel in the feature map D 
except the pixels at the edge of the feature map. As for the edge area, 
some values of the voting result map may be lost due to the pixel shift, 

which can be solved by padding zeros in the voting results. Denote i
→←

i,j 

is an operation of shifting a feature map by i pixels towards the bottom 
by j pixels towards the right and padding zeros to the empty pixels. We 
can extend the equation (6) to the entire feature map as,   

Considering equation (8), we have   

In this way, we designed a matrix method for the dynamic decon
volution of the Pixel Voting Decoder by only using matrix shifting and 
Hadamard product, we can obtain the output decoded feature map D ∈
RCobj×Hi×Wi in a much simpler way. Note that in case of stride = 1, Hi =Ho 
and Wi = Wo. In order to show more intuitively, the above-mentioned 
matrix computation is illustrated in Fig. 4. In summary, the feature 
map V (a.k.a. the pixel association degrees) is scattered into k2 per- 
channel vote maps {Vn} over the channel dimension. The per-channel 
maps {Vn} are shifted few pixels towards different directions and sum
med up pixelwise. Then the sum is cropped the extra padding area and 
elementwise multiplied with the feature map M to obtain the decoded 
output feature map D. The complex dynamic deconvolution is simplified 
into several matrix operations, which greatly increases the amount of 
computation. The consumption comparison is conducted in Section 4.4. 

3.5. The matrix calculations for stride of 2 

For the situation with stride of 2, the pixel relationships are some
what complicated. Fig. 5 illustrates the pixel relationships between the 
input and output layers across a 3× 3 convolutional layer with stride =
2. For a convolutional layer with stride = 1, each pixel on the input map 

is always associated with 9 pixels in the output feature map when k = 3, 
while each pixel in the output feature map is associated with 9 pixels in 
the input map as well. But for stride = 2, even though pixels in the 
output map are still associated with 9 pixels from the input feature map, 
the pixels in the input feature map are no longer associated with as much 
as the 9 pixels in the output map. When dealing with dynamic decon
volution, it requires to precisely manage the interlayer pixel 
relationships. 

However, if you follow the clue of interlayer pixel relationship be
tween the layers, the pixel relationship becomes clearer. For the case 
where the stride is equal to 1, during the kernel sweeping process, each 
pixel in the input feature map can be covered by the center of the kernel. 
Now the stride is equal to 2, and only the pixels at the 2x2 stride position 
can be covered by the center of the convolution kernel. Look at the 4- 
pixels group, which consists of the kernel center covered pixel a, a’s 
right neighbor pixel b, a’s lower neighbor pixel c, and a’s diagonally 
right lower neighbor pixel d. In such a 4-pixels group, the kernel center 
can be placed on the pixel a, but never on the pixels b, c, and d. The 
whole input map is a dense mosaic of the 4-pixels groups. We can focus 
on the 4-pixels group and study the pixel association patterns. For 
convenience, when the kernel center is on the input pixel a, the 
convolution output pixel is denoted as E, and the right, lower, and 
diagonally right lower neighbor of pixel E are denoted as the F, G and H, 
respectively. 

As is shown in Fig. 5, pixel a is only associated with 1 pixel E instead 

of any other pixels in the output feature map. The pixel b is associated 
with 2 pixels E and F. The pixel c is associated with 2 pixels E and G. The 
pixel d is associated with 4 pixels A, B, C and D. The green, red, purple, 

and cyan shadows in the input map are the perception fields of the pixels 
E, F, G, H. The coverage of these perception fields indicates the pixel 
associations from a, b, c, d to E, F, G, H. There are only these 4 types of 
pixel association patterns for the case of stride equals 2. Any other pixel 
can be regarded as a translation version of one of the pixel association 
patterns. 

Following the above observation results for the convolution process, 
we can infer the pixel association in the deconvolution process. Indicates 
that a, b, c, and d are now pixels in the output decoded feature map 
D ∈ RCobj×Hi×Wi , E, F, G, H are the pixels in the fused feature map 
M ∈ RCobj×Ho×Wo , according to the above observation, we can write down 
the pixel relationships as follow: 

a →E  

b→ E, F  

c → E, G  

d→E, F, G, H (11) 

Note that for the case where the stride is equal to 2, Hi and Wi are 2 
times of Ho and Wo, so the number of pixels in the feature map D is 4 

D =
∑9

n=1
Sn
→←
= S9
→←

i− 1,j− 1+ S8
→←

i− 1,j+ S7
→←

i− 1,j+1+ S6
→←

i,j− 1+ S5
→←

i,j+ S4
→←

i,j+1+S3
→←

i+1,j− 1 + S2
→←

i+1,j + S1
→←

i+1,j+1 (9)   

D =
∑9

n=1
M◦ Vn

̅→←̅
= M◦

∑9

n=1
Vn
̅→←̅
= M◦( V9

̅→←̅

i− 1,j− 1+ V8
̅→←̅

i− 1,j+ V7
̅→←̅

i− 1,j+1+ V6
̅→←̅

i,j− 1+ V5
̅→←̅

i,j+ V4
̅→←̅

i,j+1+ V3
̅→←̅

i+1,j− 1 + V2
̅→←̅

i+1,j + V1
̅→←̅

i+1,j+1) (10)   

P. Xian et al.                                                                                                                                                                                                                                     



Expert Systems With Applications 193 (2022) 116438

8

times that of feature map M. Recall that the pixel voting map V ∈
R9×Ho×Wo emitted from the pixel association module has 9 channels. 
Based on the pixel relationships, we can determine the output decoded 
feature map D as 

Da = M◦ V1
̅→←̅

i,j  

Db = M◦
(

V2
̅→←̅

i,j + V3
̅→←̅

i,j− 1

)

Dc = M◦
(

V4
̅→←̅

i,j + V5
̅→←̅

i− 1,j

)

Dd = M◦
(

V6
̅→←̅

i,j + V7
̅→←̅

i,j− 1 + V8
̅→←̅

i,j− 1 + V9
̅→←̅

i− 1,j− 1

)

(12)  

where V1
̅→←̅

i,j still represents shifted votes. This is an implicit feature 
mapping, in which 9 voting channels are mapped in pixel relationships 
[a→E, b→E, b→F, c→E, c→G, d→E, d→F, d→G, d→H]. Da− d represents the 
corresponding pixels, as described in the input feature map in the upper 
left graph of Fig. 5. Da− d has the same feature map size as the feature 
map M and the voting (the pixel association degrees) V, making it 
suitable for matrix operations. For PyTorch (Dumoulin and Visin, 2016), 
this operation is feasible and can be realized with the operations as 

D[0 :: 2, 0 :: 2] = M◦ V1
̅→←̅

D[0 :: 2, 1 :: 2 ] = M◦
(

V2
̅→←̅
+ V3

̅→←̅)

D[1 :: 2, 0 :: 2 ] = M◦
(

V4
̅→←̅
+ V5

̅→←̅)

D[1 :: 2, 1 :: 2 ] = M◦
∑9

n=6
Vn
̅→←̅

(13)  

where [s :: 2] refers to the index of every 2 pixels picked up in Ml− 1 
starting from s. As we discussed, most of the residual blocks only employ 
these two strides of convolutional layers. By analogy, the Pixel Voting 

Decoder modules for other special residual blocks can also be easily 
obtained. With the help of the matrix computations, dynamic decon
volution can achieve a speed comparable to the official PyTorch 
convolution implementation, which is much faster than the step-by-step 
value replacement operation. 

4. Experiments 

4.1. Experimental settings 

Datasets. In our experiments, the used well-known public semantic 
segmentation dataset of Cityscapes (Cordts, 2016) and instance seg
mentation dataset of COCO (Lin, 2014). The Cityscapes dataset provides 
19 categories and is composed of 5,000 fine annotated images. These 
images are urban street scenes and focus on semantic understanding of 
common driving scenarios. Due to its diversity, it is one of the most 
challenging datasets for panoptic segmentation because it covers scenes 
from more than 50 European cities. It is divided into the training set 
(2975), validation set (500), and test set (1525). The Cityscapes dataset 
is used to verify the semantic segmentation task of our proposed Pixel 
Voting Decoder. The COCO dataset is large object detection and instance 
segmentation dataset. This dataset targets scene understanding and is 
mainly intercepted from complex daily scenes. The targets in the image 
are calibrated by precise segmentation annotations. It provides 80 cat
egories, more than 330,000 images, of which 16,4062 are annotated, 
and the number of individuals in the whole dataset exceeds 1.5 million. 
It is divided into training set (82,783), validation set (40,504), and test 
set (40,775). In our experiments, the COCO dataset is used for instance 
segmentation comparison of Pixel Voting Decoder in our experiments. 

Evaluation Metrics. In order to compare the performance with 
previous methods, we follow the literature and use the mean Intersec
tion over Union (mIoU) and Average Precision (AP) to calculate the 
accuracy. 

Implementation Details. The input resolution is set to 512 × 1024. 
The raw data is augmented by color jittering, horizontal flipping, 
random scaling, and cropping. The learning rate is set to 0.01 and 
decayed in a poly curve with a power of 0.9. The batch size is set to 4, 
and the number of training iterations is set to 90 k. All those hyper
parameters are determined by maximizing the performance on the 
Cityscapes validation set. 

In the following section, we treat Deeplab (Chen, 2014; Chen, et al., 
2017; Chen, et al., 1706) version 3 as the baseline method for semantic 
segmentation and Mask R-CNN as the baseline for instance segmentation 
because they provide impressive reproducible codes and baseline 
models. We will also report MACs and the total number of parameters. 
All results were tested on a single GTX 2080Ti platform. 

Table 1 
Semantic segmentation performance Comparison on Cityscapes dataset. Coarse: 
trained on fine annotation dataset plus extra coarse annotations dataset.  

Method Coarse mIoU 

DeepLabv2-CRF (Chen, et al., 2017)   70.4 
ML-CRNN (Long et al., 2015)   71.2 
Deep Layer Cascade (Ronneberger et al., 2015)   71.1 
FRRN (Krizhevsky et al., 2012)   71.8 
Adelaide_context (Szegedy et al., 2015)   71.6 
FoveaNet (Howard et al., 1704)   74.1 
LRR-4x (Huang et al., 2017) ✓  71.8 
RefineNet (Chen et al., 1412)   73.6 
Ladder DenseNet (Chen et al., 2017)   74.1 
Global-local-Refinement (Noh et al., 2015)   77.3 
PEARL (Škrabánek, 2016)   75.4 
SAC_multiple (Dai, 2017)   78.1 
SegModel (Shen, 2017) ✓  79.2 
ResNet-38 (Bolya et al., 2019:) ✓  77.9 
PSPNet (Zhao, 2017)   78.6 
DeepLabv3 (Chen, et al., 1706) ✓  79.1 
Ours   79.3  Fig. 5. The demonstration of the relationships between input and output layers 

across the convolutional layer with stride = 2. Pixels a, b, c, d denotes 4 typical 
types of pixels in the input map, Pixels E, F, G, H denotes adjacent pixels in the 
output map. The green, red, purple, cyan shadows in the input map are the 
perception fields of the pixels E,F,G,H. From the coverage we find there are (a 
vs. E,), (b vs. E, F), (c vs. E, G), (d vs. E, F, G, H) 4 types of interlayer pixel 
relationships. 
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Fig. 6. The semantic segmentation visualization results on Cityscapes validation set compared with DeepLab v3. Column (a) is the original input images, column (b) 
is the semantic segmentation results predicted by DeepLab v3, column (c) is the semantic segmentation result predicted by our proposed Pixel Voting Decoder, 
column (d) is the semantic segmentation ground truth. Note that the black area in (d) refers to undefined labels. 
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4.2. Validation on semantic segmentation 

In order to verify the effectiveness of our proposed Pixel Voting 
Decoder, we adjust it into two tasks, namely semantic segmentation and 
instance segmentation. For semantic segmentation, we directly replace 
the feature pyramid decoder with our Pixel Voting Decoder. At the top of 
the ResNet backbone, for classification purpose, a 1× 1 convolutional 
layer is employed to predict the class logits for the few pixels in the 
smallest-size feature map. From this classification layer, we obtain a 
tensor of shape Cobj × Htop ×Wtop from the backbone of ResNet, where 
Cobj is equal to the number of semantic segmentation categories, and Htop 

and Wtop represent the height and width of the feature map at the top 
encoder layer. Then, these top layer classification logits are regarded as 
the initial input feature map C, which is regarded as the yL fed in 
Equation (4), finally, we obtain the decoded large mask with a shape of 
Cobj× Himg × Wimg, where Himg and Wimg refer to the height and width 
size of the original input image. Note that in our implementation, Pixel 
Voting Decoder only decodes the masks into 14Himg ×

1
4Wimg to reduce the 

huge computations for large feature maps. Eventually, 1
4Himg ×

1
4Wimg 

masks are unsampled into Himg ×Wimg by the bilinear interpolation. 
We compared our Pixel Voting Decoder with the mainstream se

mantic segmentation methods (such as DeepLab, PSPNet, SegModel, 
etc.) on the Cityscapes validation dataset. We adapt the Pixel Voting 
Decoder to a typical encoder-decoder architecture. The performances of 
these networks are listed in Table 1. Note that the listed networks are 
trained using the ResNet-50 backbone with single scale inputs. As shown 
in the table, architecture with Pixel Voting Decoder achieves 79.3 on 
mIoU without the help of coarse annotations, which is better than most 
of the mainstream semantic segmentation methods. For a better com
parison, we refer to the ground truth in Fig. 6 and visualize the semantic 

segmentation prediction results of our method and the most popular 
approach DeepLab v3. It is not difficult to find that the edges segmented 
by ours are sharper and the poles are connected properly. Note that the 
images of the DeepLab v3 are cropped from the original paper. The re
sults show that our approach has a better detail segmentation 
performance. 

4.3. Validation on instance segmentation 

For the instance segmentation, we modified the mask head of Mask 
R-CNN (He, 2017) using the proposed Pixel Voting Decoder. The clas
sification logits from the class head are employed as the primary mask 
for each object proposal. The pixel association degrees come from the 
backbone of ResNet, as shown in Fig. 3 (a). Considering that the number 
of the residual blocks is different due to the different source levels of the 
object proposals, we use the basic blocks of the decoder part of the Pixel 
Voting Decoders to process proposals from the encoder feature levels. By 
simulating dynamic deconvolution, we can obtain the cropped area of 
each object in all feature levels. Through similar operations in the se
mantic segmentation decoder, we finally obtain a large decoded mark 
with a shape Cobj×Himg ×Wimg, where Cobj refers to the number of object 
proposals from the Region Proposal Network (Konig, 2017) of Mask R- 
CNN. 

In this section, we compare the Pixel Voting Decoder with the well- 
known instance segmentation method Mask R-CNN to prove its effec
tiveness. In order to control the effect of the Feature Pyramid Network 
(FPN), we employ ResNet-50-C4 as the backbone. We modify it by 
incorporating our Pixel Voting Decoder into Mask R-CNN, and the 
detailed architecture modification is described in Section 3.6. The 

Table 2 
Instance segmentation performance comparison on COCO dataset with the 
mainstream Mask R-CNN.  

Method Backbone AP AP50 AP75 

Mask R-CNN Res-50-C4  30.3  51.2  31.5 
Mask R-CNN Res-50-FPN  33.6  55.2  35.3 
Ours Res-50-C4  33.9  56.1  36.2 
PANet (Wang et al., 2020) ResNeXt-101  42.0  62.3  46.4 
SOLO (Xie et al., 2020:) Res-DCN-101-FCN  40.4  62.4  43.7 
MSRCNN (Huang et al., 2019:) Res-DCN-101-FCN  38.3  58.8  41.5 
Ours ResNet-50-C4  33.9  56.1  36.2 
PolarMask (Zagoruyko et al., 1604) ResNet-101-FPN  32.1  53.7  33.1 
YOLACT (Bolya et al., 2019:) ResNet-101-FPN  29.8  48.5  31.2 
MultiPath (Paszke, 2019) ResNet-101  25.0  45.4  24.5  

Fig. 7. The instance segmentation visualization results on COCO validation set. We mark the segmented objects with their contours. Texts in white indicate the 
predicted label for each object, the following figures indicate the confidence for each object. 

Table 3 
The time consumption comparison of two implementations of the dynamic 
deconvolution, the step update version and matrix computation version on 
different strides and different input feature map sizes. The smaller is better.  

Input map size (px) Step update cost time 
(ms) 

Matrix computation cost time 
(ms)  

stride = 1 stride = 2 stride = 1 stride = 2 

1024*1024 42,925 43,030  3.781  17.07 
512*512 10,657 10,705  1.161  4.54 
256*256 2,653 2,680  0.688  1.28 
128*128 667.2 667.6  0.593  0.597 
64*64 167.2 167.1  0.445  0.597 
32*32 42.5 43.5  0.437  0.494 
16*16 11.02 11.3  0.431  0.484 
8*8 2.801 2.84  0.427  0.484  
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Instance segmentation performance is listed in Table 2. The results show 
that our Pixel Voting Decoder obtains higher metric scores than the 
vanilla ResNet-50-C4 backbone and FPN version, which shows that our 
Pixel Voting Decoder outperforms FPN. In order to intuitively demon
strate the performance of our Pixel Voting Decoder, some visualization 
results of instance segmentation are shown in Fig. 7. It is worth noting 
that the performance of the proposed Pixel Voting Decoder is conducted 
on a single GPU employing the ResNet-50 as the backbone. With limited 
computing resources, the proposed method achieves 33.9 on AP, which 
is better than the original Mask RCNN and the FPN variant, even better 
than some methods employing ResNet-101. Even though the more 
recent works (Wang et al., 2020; Xie et al., 2020:) set the pace on the 
metrics, the proposed method still achieves remarkable performance 
with fewer convolutional layers, which means less computation and less 
memory consumption. 

4.4. Ablation Study: the efficiency of the matrix computation 

As discussed in Section 3.4 and 3.5, the original dynamic deconvo
lution operation requires step-by-step updating of the deconvolution 
kernel weights during the kernel sweeping process. The proposed matrix 
computations can improve the calculation speed of the dynamic 
deconvolution. In this section, verify the efficiency of the matrix 
designed for dynamic deconvolution, and we demonstrate that the 
computational cost of the proposed dynamic deconvolution is affordable 
when compared with the typical convolution and deconvolution 

operations. 
To compare the two implementations of the dynamic deconvolution, 

we conducted a series of experiments on various input feature map 
scales for different strides. The results show that no matter how the 
stride is set, the matrix implementation is much better than the original 
step update implementation by a large margin no matter how the stride 
is set. Besides, for both cases of stride 1 and stride 2, the matrix version 
demonstrates its supreme performances. Table 3 lists the detailed 
computation time of dynamic deconvolution using these two imple
mentations. For an input feature map with a size of 1024*1024, the step 
update version costs over 40 s while the matrix computation version 
only uses 3.781 ms, the matrix version is over 11352x faster than the 
step update version. Fig. 8 provides a more intuitive perspective for 
comparing these two implementations on a log scale, the matrix version 
is 3 or 4 orders of magnitude faster on all scales of the input feature 
maps. 

During the sweeping process, using different kernel weight settings 
at each stop will cost more computing resources, but compared with 
typical convolution and deconvolution operations, this is affordable. We 
compare the proposed dynamic deconvolution with the official PyTorch 
implementations of the convolution and deconvolution, the Conv2d and 
the ConvTransposed2d. The time consumption and the GPU memory 
cost results are listed in Table 4. We only analyze the matrix imple
mentation of the dynamic deconvolution with the convolution and the 
deconvolution, because only this version is employed for the previous 
experiments. These methods are tested on a large 1024x1024 input 
feature map, the results show that the proposed dynamic deconvolution 
is a little slower than the typical operations, but the cost of stride 1 and 
stride 2 are only 4 ms and 17 ms, respectively. This is affordable for 
network training and inference. Note that the official convolution and 
deconvolution cannot update the kernel weights when sweeping the 
feature map. As for the GPU memory cost, the dynamic deconvolution 
consumes 987 MB for stride 1 and 1467 MB for stride 2, which is almost 
the same resources as the typical operations. 

It is worth noting that the matrix computation of the dynamic 
deconvolution is implemented based on the tensor operation in python, 
there is still space for improving the computation speed, for example, 
using C++. Note that the input and output channel numbers of the 
above operations are set to 19. The cases of deconvolution when stride 
equals 2 cost more memories because their outputs are much larger, 
actually the size is 2048 × 2048. 

Fig. 8. The comparison of two implementations of the dynamic deconvolution at all sizes of the input feature maps in log scale. The matrix version is much faster 
than the step update version. 

Table 4 
The comparison between the dynamic deconvolution with the typical convolu
tion and deconvolution upon the time consuming and the GPU memory cost 
when input map sizes = 1024*1024. The smaller is better.  

Input map size Time cost (ms) GPU memory (MB)  

stride =
1 

stride =
2 

stride =
1 

stride =
2 

PyTorch Conv2d 0.241 0.156 941 849 
PyTorch ConvTransposed2d 0.292 0.534 941 1397 
Dynamic deconvolution by step 

update 
42,925 43,030 1011 1519 

Dynamic deconvolution by 
matrix 

3.781 17.07 987 1467  
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5. Conclusion 

In this paper, we proposed the Pixel Voting Decoder, which is a novel 
universal decoder for both semantic segmentation and instance seg
mentation tasks. This network regresses the interlayer pixel voting re
lationships across the convolutional layers, then utilizes the 
relationships to accurately deliver higher-level information down to the 
lower level and fuse the features to generate segmentation masks. We 
propose the dynamic deconvolution to adapt the deconvolution for pixel 
voting and design the effective matrix computation to boost the calcu
lation. Compared with popular methods like Mask R-CNN and DeepLab, 
the proposed Pixel Voting Decoder showed its superiority in both flex
ibility and precision. The ability to decode the instance segmentation 
masks shows its flexibility, while the competitive performance for both 
tasks shows its precision. It can achieve better performance when 
dealing with the instance segmentation task on the COCO dataset and 
the semantic segmentation task on the Cityscapes datasets. The matrix 
version of the dynamic deconvolution also ensures the high efficiency of 
the proposed network. In the future, with more efficient implementation 
for the dynamic deconvolution, the network would run faster. Further
more, the Pixel Voting Decoder will help to build a universal network 
targeting different segmentation tasks. 
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