
Expert Systems With Applications 193 (2022) 116438

Available online 31 December 2021
0957-4174/© 2021 Elsevier Ltd. All rights reserved.

Pixel Voting Decoder: A novel decoder that regresses pixel relationships
for segmentation

Pengfei Xian a,*, Lai-Man Po a, Jingjing Xiong a, Chang Zhou a, Yuzhi Zhao a, Wing-Yin Yu a,
Weifeng Ou a, Yujia Zhang a, Xiaori Zhang b

a City University of Hong Kong, Hong Kong Special Administrative Region
b Fudan University, China

A R T I C L E I N F O

Keywords:
Convolutional neural network
Dynamic deconvolution
Encoder-Decoder
Image segmentation
Pixel voting
Residual block

A B S T R A C T

With the rapid development of the convolutional neural network, both instance segmentation and semantic
segmentation have achieved remarkable performances. Recently, many efforts have been made to use a unified
Encoder-Decoder architecture to solve these two segmentation tasks simultaneously. The encoder extracts high-
level features from the input images for both tasks. However, existing decoders cannot meet the performance
requirements of these two tasks: the semantic segmentation decoder is not flexible enough for instance seg-
mentation, and the instance segmentation decoder lacks the precision of semantic segmentation. Therefore, we
introduce a novel Pixel Voting Decoder to satisfy both precision and flexibility. The proposed decoder regresses
the interlayer pixel relationships between the input and output feature maps across the convolutional layers.
Then, the pixel relationships are regarded as the pixel votes for dynamically decoding the higher level infor-
mation from the encoder. Finally, we propose the dynamic deconvolution to make full use of the votes for each
pixel during the decoding process. Meanwhile, the matrix computation for the dynamic deconvolution is
designed to boost the calculation. Experiments show that the proposed method can achieve better performance
than the well-known methods on both instance segmentation on the COCO dataset and semantic segmentation on
the Cityscapes dataset. The matrix implementation of the dynamic deconvolution also shows its high efficiency
and feasibility.

1. Introduction

IMAGE segmentation task aims to partition the digital images into
multiple meaningful subregions and classify them. It mainly includes
two sub-tasks: instance segmentation (Hafiz and Bhat, 2020) and se-
mantic segmentation (Lateef and Ruichek, 2019). Instance segmentation
firstly detects each object in the image, then marks the pixels occupied
by each object with a label as the segmentation result. Semantic seg-
mentation classifies all the pixels in the image, and the classification
marks of each pixel constitute the segmentation result. Instance seg-
mentation can distinguish different objects in the same category, but it
does not mark pixels in regions where no objects are detected. For
example, as shown in the left part of Fig. 1, dogs in the image will be
marked with different labels, while the pixels with no object covered
will not be labeled. On the contrary, semantic segmentation provides a
label for each pixel but cannot distinguish between different instances.
In other words, the pixels of two nearby dogs are all marked with the

same “dog” label in semantic segmentation, and it cannot separate the
dogs from each other by the semantic segmentation masks, as shown in
the right part of Fig. 1.

Due to the rapid development of the convolutional neural networks,
when using the Encoder-Decoder (Badrinarayanan et al., 2017) neural
network with different network designs, both segmentation tasks now
have much better performance than traditional image processing
methods. In recent years, some efforts (Kirillov et al., 2019; Xiong et al.,
2019; Cheng et al., 2020:) have tried to use a general Encoder-Decoder
architecture to perform both semantic segmentation and instance seg-
mentation at the same time. However, it is difficult to perform these two
segmentation tasks using the same framework. So far, the existing en-
coders can be easily shared for both tasks, e.g., a pre-trained ResNet-50
(He, 2016), while the existing decoders are difficult to achieve good
performances on these two tasks simultaneously.

On the one hand, the design of existing decoders can achieve
excellent performance in the areas they target. The existing semantic

* Corresponding author at: City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region.
E-mail address: xian.pf@my.cityu.edu.hk (P. Xian).

Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

https://doi.org/10.1016/j.eswa.2021.116438
Received 1 May 2021; Received in revised form 13 September 2021; Accepted 19 December 2021

mailto:xian.pf@my.cityu.edu.hk
www.sciencedirect.com/science/journal/09574174
https://www.elsevier.com/locate/eswa
https://doi.org/10.1016/j.eswa.2021.116438
https://doi.org/10.1016/j.eswa.2021.116438
https://doi.org/10.1016/j.eswa.2021.116438
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2021.116438&domain=pdf

Expert Systems With Applications 193 (2022) 116438

2

segmentation decoders can generate high precision segmentation re-
sults. These decoders are usually designed based on the feature fusion
pyramid (Long et al., 2015). Full scales of feature maps are enlarged and
added together down along the feature pyramid. Each feature level in
the encoder is delivered to the corresponding decoding entrance of the
pyramid. This design implicitly requires 3 factors that are hard for
instance segmentation to satisfy. 1. The decoder should receive all levels
of the feature maps from the encoder; 2. The pixels across the decoding
convolutional layers should be aligned with similar patterns in the
encoder; 3. Each feature map from the encoder should be fed into the
specific decoder entrance to match the corresponding parameters. The
existing instance segmentation decoders can achieve the flexibility to
process different kinds of masks. These decoders are always designed as
the downstream of object detections, they employ a simple fully con-
volutional network to decode single-level features. Similarly, this design
also compromises 2 implicit limitations that prevent the existing se-
mantic segmentation decoders from organizing multi-level features with
the pyramid. 1. The objects are detected from different feature levels, so,
the relative feature maps are not suitable for a pyramid for some
detected objects. 2. The objects are detected at different positions on a
feature map, making it difficult to align features at adjacent levels. The
instance segmentation decoders choose to decode based on single-level
features, making it flexible enough to process all kinds of detected
objects.

On the other hand, the existing decoders cannot meet the flexibility
and precision requirements at the same time. The existing semantic
segmentation decoders perform poorly on organizing all kinds of fea-

tures for the detected objects. That is because the feature fusion pyramid
is only suitable for few objects that are detected at specific positions.
Directly feeding the features into the pyramid may cause non-
convergence problems due to the mismatch of features and parame-
ters. The existing instance segmentation decoders can hardly achieve
high precision because the decoding is only based on a single feature
level. Besides, the fully convolutional network emits very small sizes of
features. For example, Mask R-CNN (He, 2017), the most famous
instance segmentation solution, produces segmentation masks with only
14× 14 sizes, then directly interpolates them up to the same sizes of the
original images, 1333× 800, which will lose lots of precision.

In order to address the above problems, we propose a novel decoder,
namely Pixel Voting Decoder. It simulates the pixel relationships be-
tween two feature maps across a convolutional block in the encoding
process, then makes use of these pixel relationships to decode the feature
maps and obtain the segmentation masks. The pixel relationships record
how pixels in a feature level are related to the pixels across the con-
volutional layers. By utilizing the pixel relationships, pixels at different
levels can be tracked and aligned, all levels of the feature maps can be
employed and organized, the flexibility and precision can be achieved at
the same time. Usually, each pixel is related to multiple pixels, we call
the process that multiple relative pixels are summed weighted by the
pixel relationships as pixel voting.

Similar to most of the encoder-decoder architecture, the Pixel Voting
Decoder also iteratively uses the repeated basic block, as demonstrated
in Fig. 2. The repeated block can be divided into 2 parts: the pixel as-
sociation module and the dynamic deconvolution module. The pixel

Fig. 1. Comparison of instance segmentation (left) and semantic segmentation (right). Instance segmentation can distinguish different dogs in the same category and
labels are only assigned to the pixels within the detected objects. Semantic segmentation can assign a label for every pixel.

Fig. 2. The overview of the Pixel Voting Decoder, which is based on the encoder-decoder architecture. Both the encoder and the decoder consist of iterative basic
blocks. The major contributions are in the basic blocks. Take a basic block as an example, the input feature passes through a residual block and obtains the output
feature. Then, the input and output features are concatenated and convolved with 1× 1 convolutional layer to regress the pixel association degrees. For decoding, the
output feature and the upper level’s decoded input are concatenated and fed into the dynamic deconvolution module to obtain the decoded feature map. The marks
Hi and Wi refer to the input feature map height and width sizes, while Ho and Wo refer to the output map size. Ci and Co denotes the channel number of input and
output. Cobj denote the number of detected objects for the instance segmentation or the number of categories for semantic segmentation.

P. Xian et al.

Expert Systems With Applications 193 (2022) 116438

3

association module is designed to simulate the pixel relationships and
regress the pixel association degrees across the convolutional layers. The
dynamic deconvolution module utilizes the pixel association degrees to
deliver the higher-level features to the lower level and fuse the features
to generate segmentation masks. Because the traditional deconvolution
is not suitable for the pixel voting scheme, we propose the dynamic
deconvolution and design the matrix computation to boost the
calculation.

We evaluate the proposed Pixel Voting Decoder for semantic seg-
mentation and instance segmentation tasks on the Cityscapes dataset
and the COCO dataset, respectively. Compared with the previous pipe-
lines (Chen, et al., 1706; He, 2017), the proposed decoder has better
performance than the popular methods on both tasks. In addition, we
also visualized some samples on the Cityscapes and COCO datasets. In
summary, the main contributions of this paper are as follows:

(1) This paper reveals the observation that the existing decoders
cannot satisfy the instance segmentation and semantic segmen-
tation tasks at the same time.

(2) We propose a network Pixel Voting Decoder. It can achieve good
performance for these two segmentation tasks. It regresses the
pixel relationships across the convolutional layers, then uses the
pixel relationships to obtain better segmentations.

(3) We propose the dynamic deconvolution. It makes full use of the
pixel relationships to fuse and decode the features. It dynamically
deconvolves the features and uses the pixel relationships as the
kernel weights.

(4) We implemented the matrix computation of the dynamic
deconvolution to increase the calculation speed and reduce the
memory cost.

(5) We evaluated the proposed Pixel Voting Decoder for semantic
segmentation and instance segmentation tasks. Then compare it
with well-known methods to demonstrate that better perfor-
mance can be obtained.

Fig. 3. The overview of the Pixel Voting Decoder. (a) illustrates a typical residual block of the ResNet-50, where Ci and Corefer to the channel number of the input
and output maps, 7× 7, 4× 4 indicates the example feature map sizes, the stride equals 2. Residual blocks are repeatedly employed to reduce the feature map size
and produce high-dimension features level by level. A residual block receives an input feature map A and convolves for 3 layers with 1× 1, 3× 3, 1× 1 kernels in
sequence. The convolution result is elementally added to map A with a bypass 1× 1 convolution to fit the feature size and channel number. The added result serves as
the residual block’s output feature map B. (b) demonstrates the pixel association module based on a residual block. The input and output feature map A and B of the
residual block are concatenated after a 1× 1 convolution respectively, the concatenated feature map produces the pixel association degrees (a 9-channel tensor)
using a convolution layer for regression. (c) illustrates a typical 3× 3 kernel deconvolution operation with stride 2. Take 2 pixels in the input feature map as ex-
amples, in deconvolution, the pixels at different locations elementally multiply with the shared 3× 3 weights, the 3× 3 result pixels are added to the corresponding
locations in the output feature map. (d) demonstrates the dynamic deconvolution module, the decoder part of the network, from overview and detail view,
respectively. The left part is from the overview. The output feature map B from the corresponding residual block is concatenated with the output decoded feature map
C of the upper-level residual block’s decoder part, forming a fused feature map M, then processed by the dynamic deconvolution, the output decoded feature map D is
obtained. The right part is from a detail view. The dynamic deconvolution is similar to the typical deconvolution, except that it abandons shared weights, instead, it
employs the 9 values at the corresponding pixel in the pixel association degrees to serve as the deconvolution weights.

P. Xian et al.

Expert Systems With Applications 193 (2022) 116438

4

2. Related works

2.1. The encoder – Decoder architecture

The Encoder-Decoder framework (Badrinarayanan et al., 2017) is
widely used for image segmentation tasks. The framework contains two
functional modules: the encoder and the decoder. The encoder, repre-
sented by an encoding function z = f(x), down-samples the input image
into high-dimensional latent-space feature maps through convolutional
layers level by level, thereby reducing the feature map, increasing the
channel number, and generating the high-dimensional feature maps are
generated. The encoder usually emits 4 layers of feature maps,
customarily marked from level 2 to level 5. The higher the level, the
smaller the feature map and the more macroscopic information the
feature map contains. Widely used encoders include: AlexNet (Kriz-
hevsky et al., 2012), VGGNet (Simonyan and Zisserman, 2014), ResNet
(He, 2016), GoogLeNet (Szegedy et al., 2015), MobileNet (Howard et al.,
1704), and DenseNet (Huang et al., 2017), etc.

The purpose of the decoder, y = g(z), aims to up-sample the decoded
output feature map from the adjacent higher-level residual block uti-
lizing deconvolution (Noh et al., 2015) or unpooling (Škrabánek, 2016),
then aggregate the expanded feather map with the corresponding level’s
feather map from the encoder. Long et al. (Long et al., 2015) firstly
proposed to up-sample the higher-level feature maps and aggregate
them with the lower features using a fully convolutional network (FCN).
FCN up-samples the feature maps by means of direct bilinear interpo-
lation. On the contrary, Badrinarayanan et al. (Badrinarayanan et al.,
2017) proposed the SegNet to replace the interpolation with unpooling.
The SegNet uses pooling indices from the max-pooling step in the
encoder to perform non-linear up-sampling. Ronneberger et al. (2015)
proposed the U-Net, which provides a symmetric up-sampling decoder
to the encoder so that the decoder can make full use of all levels of
feature maps. Zhao et al. (Zhao, 2017) developed the Pyramid Scene
Parsing Network (PSPNet), a multi-scale network to better learn the
global context representation of a scene. Chen et al. (Noh et al., 2015;
Chen et al., 1412; Chen et al., 2017) proposed the DeepLab series by
employing the dilated convolution on the hidden features to improve the
performance. The decoders stated above are mostly employed in se-
mantic segmentation tasks. As for instance segmentation, He et al. (He,
2017) proposed Mask R-CNN, whose decoder can align the arbitrary size
of cropped features into a unified size 14× 14, so as to satisfy the
flexibility requirement of instance segmentation.

2.2. Instance segmentation and semantic segmentation

The networks of instance segmentation and semantic segmentation,
especially the decoder parts, are designed based on very different ideas.
Semantic segmentation methods mainly focus on increasing the
perception of hidden features: Zhao, et al. (Zhao, 2017) perform spatial
pyramid pooling at several grid scales and improves the precision. Chen
et al. (Chen et al., 1412) and Dai et al. (Dai, 2017) enlarge the perceptual
fields for the convolutional kernels by introducing the dilated convo-
lution and deformable kernels. Instance segmentation mainly extends
the Mask R-CNN (He, 2017) to improve the performance. Bolya et al.
(Bolya et al., 2019:) proposed the YOLACT to further crop and assemble
the object masks to improve the Intersection over Union (IoU) perfor-
mance. Huang et al. (Huang et al., 2019:) proposed to add an extra mask
IoU for calculating the loss which improves the IoU performance.
Recently, Kirillov et al. proposed another subtask, the panoptic seg-
mentation, to solve both instance segmentation and semantic segmen-
tation tasks using the same network. Many works (Xiong et al., 2019:;
Cheng et al., 2020:) tried to solve this novel task using the encoder-
decoder architecture. They employ the same encoder for extracting
the features, however, they promise to use different decoders to deal
with the two tasks.

2.3. Deconvolutions

The deconvolution, a.k.a. the transposed convolution, aims to swap
the forward and backward passes of a convolution (Zeiler, 2010), which
is always used to restore the feature size of a feature map that has passed
through a convolution. Zeiler et al. (Zeiler et al., 2011) first proposed the
deconvolution networks. Noh et al. (2015) proposed that deconvolution
is a mirrored version of the convolution, which associates a single input
activation with multiple outputs. Vincent et al. (Zeiler, 2010) employ a
set of the shared kernel weights to sweep over the input feature map,
each pixel is multiplied with the elements in the kernel, the kernel
products are then summed up according to their pixel positions. As far as
we know, the existing deconvolutions all use the shared kernel during
the sweeping process.

3. Pixel Voting Decoder

3.1. Problem formulation

The encoder-decoder architecture is widely used in segmentation
tasks, and our network also employs this architecture. As shown in Fig. 3
(a), the encoder uses the residual block to perform a level-by-level down-
sampling operation, it reduces the feature map size and generates high-
dimensional feature maps. The higher the level, the more comprehen-
sive the extracted image features, and the smaller the size of the feature
map. Symmetrical to the encoder, the decoder, shown in Fig. 3 (d),
performs a level-by-level up-sampling operation. The encoder-decoder
runs based on the repeated basic blocks. The residual blocks are the
repeated basic blocks of the encoder, and similarly, the dynamic
deconvolution module is the repeated basic block of the decoder. The
residual block receives the input feature map A and sends out an output
feature map B. Then, the dynamic deconvolution module receives the
map B and the feature map C, and generates the decoded feature map D.
Map C is the decoded feature map from the decoder of the upper-level
residual block. Map B and map C have the same feature map size,
meanwhile, map A and map D have the same feature map size. Suppose
map C contains the higher-level coarse segmentation information, the
decoder can accurately propagate it to the finer-segmented map D of
larger sizes.

In detail, as shown in Fig. 3, the residual block is sequentially
convolved in 3 layers with 1× 1, k× k, 1× 1 kernels on the input feature
map A. The convolution result is elementally added to feature map A
with a bypass 1× 1 convolution to fit the feature size and the number of
channels. The added result is served as the output feature map B. Note
that k refers to the kernel size of the middle convolutional layer,
generally k = 3. Then, the feature map A and B are concatenated after a
1× 1 convolution, and a convolutional layer is used to regress the
concatenated feature map into the pixel association degrees. The dy-
namic deconvolution module receives the decoded feature map C from
the upper module, then aggregates it with the output feature map B from
the corresponding level residual block in the encoder. Feature maps C
and B are concatenated as the input of the dynamic deconvolution. The
dynamic deconvolution is parameterized by the pixel association de-
gree, and the decoded feature map D of the current module is sent out.
Repeat this process level by level, and finally, the bottom up-sampling
feature map will act as the final output segmentation masks. The pro-
cess described above can be expressed by

Z = Enc(X) (1)

Y = Dec(Z) (2)

where X,Y, Z represent the original input image, the final output seg-
mentation masks, and the embedded feature maps, respectively. More-
over, Enc and Dec represent the encoder and the decoder, respectively. In
our case, the Enc is exactly the backbone of ResNet-50 (He, 2016).

P. Xian et al.

Expert Systems With Applications 193 (2022) 116438

5

The encoder and decoder are designed in an iterative approach, and
the details of (1) and (2) can be expressed by iterative formulas. From a
detail point of view, the encoder consists of several repeated residual
blocks. If the total level number is L, we have

zl+1 = resl(zl)

Z = {z1,⋯, zL} (3)

where l ∈ 0,⋯, L − 1 denotes the level index in the encoder, resl repre-
sents the lth level residual block, zl and zl+1 represent the extracted
hidden feature maps. For each residual block, zl+1 denotes the output
feature map B, while zl refers to the input feature map A, which is also
the output feature map B of the l − 1th level residual block. We define z0
as the original input image X. The embedded feature maps Z contains all
of the encoder’s output feature maps from z1 to zL.

The dynamic deconvolution module receives two inputs and pro-
duces one output. The iterative decoding process can be expressed as

yl = dydl(yl+1, zl+1) (4)

where dydl denotes the lth level dynamic deconvolution module, yl
represents the output decoded feature map of the current level, which is
expressed as the map D in Fig. 3, while yl+1 represents the upper-level
output decoded feature map. At the top level, there is no upper level,
so we define yL = zL. The output segmentation mask Y is exactly y0. By
introducing the above iterative representations, we have formalized an
encoder-decoder network. The entire network can be divided into
several repeated blocks, including the two modules. The pixel associa-
tion module corresponds to equation (3) and the dynamic deconvolution
module corresponds to equation (4). Both of these modules act as iter-
ators, so they will be reused at all levels.

3.2. The pixel association regression

The primary task of Pixel Voting Decoder is to model the pixel voting
relationship between layers, based on this setting, it is important to
regress the pixel association degrees firstly for each level. The pixel as-
sociation module is designed based on the residual block because the
residual block is widely used in the cutting-edge encoders (Peng, 2019;
Szegedy et al., 2015; Howard et al., 1704; Huang et al., 2017). Also, it
meets the iterative repeating design described in formula (3) very well.
Fig. 3 (a) illustrates the residual block of ResNet-50, where Ci and
Corefer to the channel number of the input and output maps, 7× 7 and
4× 4 indicates the example feature map sizes, the stride is 2. The re-
sidual blocks are repeatedly employed to reduce the feature map size
and produce high-dimensional features level by level. For each residual
block, there is only one convolutional layer whose kernel size k is larger
than 1. So, depending on the middle convolutional layer kernel size k,
each pixel in map A is only associated with no more than n = k2 pixels in
map B.

Based on the above observations, the Pixel Voting Decoder regresses
the pixel association degrees between map A and map B. As demon-
strated in Fig. 3 (b), the regression is conducted in the pixel association
module. After convolving both maps with a 1× 1 kernel respectively,
the module concatenates the input map A and output map B across the
residual block, then employs a convolutional layer to regress the asso-
ciation degrees from each pixel in map B to n pixels in map A. The
regressed pixel association degrees record the pixel voting relationships,
which play a key role in the successive dynamic deconvolution module.

Here is a demonstration to make the network flow easier to under-
stand, by means of following the above process from the perspective of a
tensor. Suppose a tensor with size Ci × 7× 7, where Ci denotes the
channel number, is the input feature map A of a residual block. The
stride of the residual block is 2, the middle convolutional layer kernel
size k is 3, so, after 3 stacks of convolutional layers, a bypass convolu-
tion, and the elementary sum in the residual block, we get an output

feature map B, a tensor with size Co× 4× 4. Map B is the basic output of
the residual block in the ResNet backbone. Then, the tensors map A and
map B are processed with a kernel 1× 1 convolutional layer respec-
tively. Note that the convolution for map A is configured as the same
stride as the residual block, which means after the convolution, the new
map A has a size of Ci× 4× 4, the new map B is still in size of Co× 4× 4.
Both the new map A and B are concatenated into a tensor with size
(Ci + Co)× 4× 4. The concatenated tensor is then convolved to obtain
the result tensor with a size of n× 4× 4, which is the pixel association
degrees. For the case of k = 3, n = 9. So, there are n values at each pixel,
they represent the dynamic kernel weights at each pixel position in the
deconvolution sweeping process.

3.3. The dynamic deconvolution

The dynamic deconvolution module is modified based on the tradi-
tional deconvolution (Mohammadi et al., 2016) operation to satisfy the
requirement of our task. The typical deconvolution is the inverse oper-
ation of the convolution (Mohammadi et al., 2016). The convolution
operation extracts the features from several pixels of the input map using
a kernel filter and emits an output pixel. On the contrary, deconvolution
associates one input pixel with several output pixels. Both the convo-
lution and deconvolution operations are parameterized by a shared filter
kernel. That is, during the kernel sweeping process, the kernel weights
remain the same all over the feature map. Fig. 3 (c) illustrates a typical
3× 3 kernel deconvolution operation with stride 2. Take 2 pixels in the
input feature map as examples, in deconvolution, the pixels at different
locations elementally multiply with the shared 3× 3 weights, the 3× 3
multiplication results are added to the corresponding pixel locations in
the output feature map. The stride scheme in the deconvolution is
similar to that in the convolution. In this way, each pixel in the input
feature map is associated with n pixels in the output feature map.

However, in the deconvolution, the setting of sharing weight all over
the feature map is unreasonable in our case, because the interlayer pixel
relationships are different as the image content are changing during the
deconvolution kernel sweeping process. To address this problem, the
Pixel Voting Decoder proposes the dynamic deconvolution. That is,
when the kernel sweeps over the feature map, at each pixel, there would
be a set of unique weights in the kernel, the pixel association degrees at
that position would act as the unique weights. We call this process the
dynamic deconvolution. Fig. 3 (d) illustrates the decoder using the pixel
association degrees and the dynamic deconvolution from the overall
view and detail view. The left part is from the overview. The output
feature map B from the corresponding residual block is concatenated
with the output decoded feature map C from the (l+ 1)th level residual
block’s decoder. Then the concatenated feature maps are fused with a
1× 1 convolutional layer, emitting the fused feature map M, afterward,
processed by the dynamic deconvolution module, the output decoded
feature map D is obtained. The right part is from the detail view. The
dynamic deconvolution is similar to the typical deconvolution, except
that it employs the pixel association degrees instead of shared weights as
the deconvolution parameters. The pixel association degrees are orga-
nized as a n-channel tensor, which has the same map size as the map B,
so, each pixel in the degree tensor contains n values, these n values in a
pixel are reshaped into a k× k tensor and play the role of the dynamic
deconvolution kernel weight. Then, the dynamic deconvolution can
perform like a typical deconvolution operation to sweep all over the
feature map with specific strides.

Follow the demonstration in the previous section, the network flow
for the dynamic deconvolution module is described below. Two of the
inputs for the dynamic deconvolution decoding, the output feature map
B of the residual block and the regressed pixel association degrees, have
been obtained. Another input is the feature map C with a size of Cobj×

4× 4, which is actually the decoded output D from the l+ 1th level re-
sidual block’s decoder, where Cobj denotes the tensor channel number,

P. Xian et al.

Expert Systems With Applications 193 (2022) 116438

6

which equals to the number of detected objects in instance segmentation
or the number of categories in semantic segmentation. The feature maps
B and C are concatenated into a tensor with size (Co + Cobj)× 4× 4, then
fused using an 1× 1 convolutional layer into a Cobj × 4× 4 tensor,
which is the input of the dynamic deconvolution. The dynamic decon-
volution employs the pixel association degrees (n× 4× 4) as the
deconvolution kernel weights, then emits the decoded feature map D
with a size of Cobj× 7× 7, which is the same map size as the input feature
map A of the residual block. In detail, the pixel association degrees are
transformed into k× k× 4× 4, at each pixel position during the
deconvolution, there is a k× k filter that plays the role of deconvolution
kernel. Note that map D also plays the role of input feature map C for the
decoder of the (l − 1)th level residual block. The decoding process is
conducted level by level, residual block by residual block, at the bottom
level (l = 0), the decoded map D is just the segmentation mask.

3.4. Acceleration: The matrix solution for the dynamic deconvolution

There is a problem in the deconvolution process. If the kernel
weights are updated at every stop during the deconvolution kernel
sweeping process, it will be very slow. The Pixel Voting Decoder turns to
matrix operations to achieve fast and efficient implementation. Consider
two typical strides: stride of 1 and stride of 2. We have designed the
matrix computations for these two types of dynamic deconvolution.

Before demonstrating the matrix computation, we first analyze the
pixel-level dynamic deconvolution module in detail. After concatenating
the output feature map B of the residual block and the (l+ 1)th level
decoded feature map C, the 1× 1 convolution will mix the channel
number into Cobj, and then obtain the fused feature map M ∈ RCobj×Ho×Wo

as the input of the dynamic deconvolution. The regressed pixel associ-
ation degrees act as the interlayer pixel voting map V ∈ Rk2×Ho×Wo ,
which provides the values of the k× k kernel for each pixel position
during the deconvolution sweeping process. As shown in the detail view
of Fig. 3 (d), for each pixel Mi,j∈ RCobj in the feature map M, there are k2

votes Vi,j∈ Rk2 at the corresponding pixel position in the feature map V.
These votes are reshaped into a k× k kernel V̇i,j∈ Rk×k and multiplied
with Mi,j by broadcasting to obtain the single pixel voting result

Si,j∈ RCobj×k×k, which can be expressed as

Si,j = Mi,j
◦V̇i,j (5)

where ◦ denotes the Hadamard product. The center of Si,j is located at (i,
j), covering k2 pixels from (i − k

2, j −
k
2) to (i + k

2,j +
k
2), if indivisible, it will

be rounded. The size mismatch between Mi,j and V̇i,j can be resolved by
the broadcast mechanism. In detail, Mi,j is reshaped into Cobj× 1× 1, V̇i,j

is reshaped into 1× k× k, and the product Si,j has a shape of Cobj× k× k.
The single pixel voting results {Si,j} are added up with overlapping.

In the dynamic deconvolution, the above process is conducted on each
pixel by sweeping all over the feature map M, combining the deconvo-
lution stride settings, the output feature map size is the same as the input
feature map A of the residual block. Therefore, the decoded result of the
lth level is the overlapping sum D ∈ RCobj×Hi×Wi , we have

D =
∑

0 ≤ i < Ho

0 ≤ j < Wo

Si,j =
∑

0 ≤ i < Ho

0 ≤ j < Wo

Mi,j
◦V̇ i,j

(6)

It is worth noting that the output feature size may change because of
the stride, which is the same as the stride of the residual block, so that
the feature size of feature map D is Hi ×Wi instead of Ho× Wo. For the
case of stride = 1, the computation is simple. To better understand the
overlapping sum, there is no harm in giving an example. Let k = 3,then,
there are 9 pixels in the single pixel voting result Si,j. As shown in Fig. 3
(d), we can number the pixels in Si,j with 1–9, the 3× 3 voting results {
Si,j} are overlapped with each other. For each pixel Di,j of the sum result,
there are also 9 values from 9 voting results. Considering the over-
lapping bias, we have

Di,j = S9
i− 1,j− 1+ S8

i− 1,j+ S7
i− 1,j+1

+ S6
i,j− 1+ S5

i,j+ S4
i,j+1

+S3
i+1,j− 1 + S2

i+1,j + S1
i+1,j+1 (7)

where Sn
i,j refers to the value at a certain relative pixel position in the 3×

3 voting result, and its center is at (i,j). For example, S9
i,j refers to the top

Fig. 4. Demonstration of the process of matrix approach for Pixel Voting Decoder in case of stride = 1. The votes map V (a.k.a. the pixel association degrees) is
scattered into k2 per-channel vote maps {Vn} over the channel dimension. The per-channel maps {Vn} are shifted few pixels towards different directions and summed
up pixelwise. The sum is then cropped the padding area and elementwise multiplied with the map M to obtain the decoded output feature map D.

P. Xian et al.

Expert Systems With Applications 193 (2022) 116438

7

left value, while S9
i,j is the value of the bottom right value, and so on.

Note that {Si,j} cannot be represented as a feature map, because {Si,j}

is a collection of 3× 3 maps rather that single pixel values. However, {
Sn

i,j} can be represented as a feature map Sn ∈ RCobj×Ho×Wo , and we have

Sn = {Sn
i,j} = M◦{V̇n

i,j} = M◦V̇n
= M◦Vn (8)

where V̇n
i,j denotes the value at the corresponding relative pixel of the

kernel V̇i,j, {V̇
n
i,j} denotes the collection of V̇n

i,j, V̇
n
= {V̇n

i,j} ∈ RHo×Wo de-
notes the reconstructed map of the n-position pixels. Vn denotes the nth

channel feature map of V. For broadcasting, similarly, the V̇n
,Vn ∈

RHo×Wo are reshaped into 1× Ho× Wo.
Inspired by equations (7) and (8), it is easy to find that Di,j is the sum

of the pixel-shifted version of the nearby voting result maps {Sn}. In
addition, Di,j can represent the arbitrary pixel in the feature map D
except the pixels at the edge of the feature map. As for the edge area,
some values of the voting result map may be lost due to the pixel shift,

which can be solved by padding zeros in the voting results. Denote i
→←

i,j

is an operation of shifting a feature map by i pixels towards the bottom
by j pixels towards the right and padding zeros to the empty pixels. We
can extend the equation (6) to the entire feature map as,

Considering equation (8), we have

In this way, we designed a matrix method for the dynamic decon-
volution of the Pixel Voting Decoder by only using matrix shifting and
Hadamard product, we can obtain the output decoded feature map D ∈
RCobj×Hi×Wi in a much simpler way. Note that in case of stride = 1, Hi =Ho
and Wi = Wo. In order to show more intuitively, the above-mentioned
matrix computation is illustrated in Fig. 4. In summary, the feature
map V (a.k.a. the pixel association degrees) is scattered into k2 per-
channel vote maps {Vn} over the channel dimension. The per-channel
maps {Vn} are shifted few pixels towards different directions and sum-
med up pixelwise. Then the sum is cropped the extra padding area and
elementwise multiplied with the feature map M to obtain the decoded
output feature map D. The complex dynamic deconvolution is simplified
into several matrix operations, which greatly increases the amount of
computation. The consumption comparison is conducted in Section 4.4.

3.5. The matrix calculations for stride of 2

For the situation with stride of 2, the pixel relationships are some-
what complicated. Fig. 5 illustrates the pixel relationships between the
input and output layers across a 3× 3 convolutional layer with stride =
2. For a convolutional layer with stride = 1, each pixel on the input map

is always associated with 9 pixels in the output feature map when k = 3,
while each pixel in the output feature map is associated with 9 pixels in
the input map as well. But for stride = 2, even though pixels in the
output map are still associated with 9 pixels from the input feature map,
the pixels in the input feature map are no longer associated with as much
as the 9 pixels in the output map. When dealing with dynamic decon-
volution, it requires to precisely manage the interlayer pixel
relationships.

However, if you follow the clue of interlayer pixel relationship be-
tween the layers, the pixel relationship becomes clearer. For the case
where the stride is equal to 1, during the kernel sweeping process, each
pixel in the input feature map can be covered by the center of the kernel.
Now the stride is equal to 2, and only the pixels at the 2x2 stride position
can be covered by the center of the convolution kernel. Look at the 4-
pixels group, which consists of the kernel center covered pixel a, a’s
right neighbor pixel b, a’s lower neighbor pixel c, and a’s diagonally
right lower neighbor pixel d. In such a 4-pixels group, the kernel center
can be placed on the pixel a, but never on the pixels b, c, and d. The
whole input map is a dense mosaic of the 4-pixels groups. We can focus
on the 4-pixels group and study the pixel association patterns. For
convenience, when the kernel center is on the input pixel a, the
convolution output pixel is denoted as E, and the right, lower, and
diagonally right lower neighbor of pixel E are denoted as the F, G and H,
respectively.

As is shown in Fig. 5, pixel a is only associated with 1 pixel E instead

of any other pixels in the output feature map. The pixel b is associated
with 2 pixels E and F. The pixel c is associated with 2 pixels E and G. The
pixel d is associated with 4 pixels A, B, C and D. The green, red, purple,

and cyan shadows in the input map are the perception fields of the pixels
E, F, G, H. The coverage of these perception fields indicates the pixel
associations from a, b, c, d to E, F, G, H. There are only these 4 types of
pixel association patterns for the case of stride equals 2. Any other pixel
can be regarded as a translation version of one of the pixel association
patterns.

Following the above observation results for the convolution process,
we can infer the pixel association in the deconvolution process. Indicates
that a, b, c, and d are now pixels in the output decoded feature map
D ∈ RCobj×Hi×Wi , E, F, G, H are the pixels in the fused feature map
M ∈ RCobj×Ho×Wo , according to the above observation, we can write down
the pixel relationships as follow:

a →E

b→ E, F

c → E, G

d→E, F, G, H (11)

Note that for the case where the stride is equal to 2, Hi and Wi are 2
times of Ho and Wo, so the number of pixels in the feature map D is 4

D =
∑9

n=1
Sn
→←
= S9
→←

i− 1,j− 1+ S8
→←

i− 1,j+ S7
→←

i− 1,j+1+ S6
→←

i,j− 1+ S5
→←

i,j+ S4
→←

i,j+1+S3
→←

i+1,j− 1 + S2
→←

i+1,j + S1
→←

i+1,j+1 (9)

D =
∑9

n=1
M◦ Vn

̅→←̅
= M◦

∑9

n=1
Vn
̅→←̅
= M◦(V9

̅→←̅

i− 1,j− 1+ V8
̅→←̅

i− 1,j+ V7
̅→←̅

i− 1,j+1+ V6
̅→←̅

i,j− 1+ V5
̅→←̅

i,j+ V4
̅→←̅

i,j+1+ V3
̅→←̅

i+1,j− 1 + V2
̅→←̅

i+1,j + V1
̅→←̅

i+1,j+1) (10)

P. Xian et al.

Expert Systems With Applications 193 (2022) 116438

8

times that of feature map M. Recall that the pixel voting map V ∈
R9×Ho×Wo emitted from the pixel association module has 9 channels.
Based on the pixel relationships, we can determine the output decoded
feature map D as

Da = M◦ V1
̅→←̅

i,j

Db = M◦
(

V2
̅→←̅

i,j + V3
̅→←̅

i,j− 1

)

Dc = M◦
(

V4
̅→←̅

i,j + V5
̅→←̅

i− 1,j

)

Dd = M◦
(

V6
̅→←̅

i,j + V7
̅→←̅

i,j− 1 + V8
̅→←̅

i,j− 1 + V9
̅→←̅

i− 1,j− 1

)

(12)

where V1
̅→←̅

i,j still represents shifted votes. This is an implicit feature
mapping, in which 9 voting channels are mapped in pixel relationships
[a→E, b→E, b→F, c→E, c→G, d→E, d→F, d→G, d→H]. Da− d represents the
corresponding pixels, as described in the input feature map in the upper
left graph of Fig. 5. Da− d has the same feature map size as the feature
map M and the voting (the pixel association degrees) V, making it
suitable for matrix operations. For PyTorch (Dumoulin and Visin, 2016),
this operation is feasible and can be realized with the operations as

D[0 :: 2, 0 :: 2] = M◦ V1
̅→←̅

D[0 :: 2, 1 :: 2] = M◦
(

V2
̅→←̅
+ V3

̅→←̅)

D[1 :: 2, 0 :: 2] = M◦
(

V4
̅→←̅
+ V5

̅→←̅)

D[1 :: 2, 1 :: 2] = M◦
∑9

n=6
Vn
̅→←̅

(13)

where [s :: 2] refers to the index of every 2 pixels picked up in Ml− 1
starting from s. As we discussed, most of the residual blocks only employ
these two strides of convolutional layers. By analogy, the Pixel Voting

Decoder modules for other special residual blocks can also be easily
obtained. With the help of the matrix computations, dynamic decon-
volution can achieve a speed comparable to the official PyTorch
convolution implementation, which is much faster than the step-by-step
value replacement operation.

4. Experiments

4.1. Experimental settings

Datasets. In our experiments, the used well-known public semantic
segmentation dataset of Cityscapes (Cordts, 2016) and instance seg-
mentation dataset of COCO (Lin, 2014). The Cityscapes dataset provides
19 categories and is composed of 5,000 fine annotated images. These
images are urban street scenes and focus on semantic understanding of
common driving scenarios. Due to its diversity, it is one of the most
challenging datasets for panoptic segmentation because it covers scenes
from more than 50 European cities. It is divided into the training set
(2975), validation set (500), and test set (1525). The Cityscapes dataset
is used to verify the semantic segmentation task of our proposed Pixel
Voting Decoder. The COCO dataset is large object detection and instance
segmentation dataset. This dataset targets scene understanding and is
mainly intercepted from complex daily scenes. The targets in the image
are calibrated by precise segmentation annotations. It provides 80 cat-
egories, more than 330,000 images, of which 16,4062 are annotated,
and the number of individuals in the whole dataset exceeds 1.5 million.
It is divided into training set (82,783), validation set (40,504), and test
set (40,775). In our experiments, the COCO dataset is used for instance
segmentation comparison of Pixel Voting Decoder in our experiments.

Evaluation Metrics. In order to compare the performance with
previous methods, we follow the literature and use the mean Intersec-
tion over Union (mIoU) and Average Precision (AP) to calculate the
accuracy.

Implementation Details. The input resolution is set to 512 × 1024.
The raw data is augmented by color jittering, horizontal flipping,
random scaling, and cropping. The learning rate is set to 0.01 and
decayed in a poly curve with a power of 0.9. The batch size is set to 4,
and the number of training iterations is set to 90 k. All those hyper-
parameters are determined by maximizing the performance on the
Cityscapes validation set.

In the following section, we treat Deeplab (Chen, 2014; Chen, et al.,
2017; Chen, et al., 1706) version 3 as the baseline method for semantic
segmentation and Mask R-CNN as the baseline for instance segmentation
because they provide impressive reproducible codes and baseline
models. We will also report MACs and the total number of parameters.
All results were tested on a single GTX 2080Ti platform.

Table 1
Semantic segmentation performance Comparison on Cityscapes dataset. Coarse:
trained on fine annotation dataset plus extra coarse annotations dataset.

Method Coarse mIoU

DeepLabv2-CRF (Chen, et al., 2017) 70.4
ML-CRNN (Long et al., 2015) 71.2
Deep Layer Cascade (Ronneberger et al., 2015) 71.1
FRRN (Krizhevsky et al., 2012) 71.8
Adelaide_context (Szegedy et al., 2015) 71.6
FoveaNet (Howard et al., 1704) 74.1
LRR-4x (Huang et al., 2017) ✓ 71.8
RefineNet (Chen et al., 1412) 73.6
Ladder DenseNet (Chen et al., 2017) 74.1
Global-local-Refinement (Noh et al., 2015) 77.3
PEARL (Škrabánek, 2016) 75.4
SAC_multiple (Dai, 2017) 78.1
SegModel (Shen, 2017) ✓ 79.2
ResNet-38 (Bolya et al., 2019:) ✓ 77.9
PSPNet (Zhao, 2017) 78.6
DeepLabv3 (Chen, et al., 1706) ✓ 79.1
Ours 79.3 Fig. 5. The demonstration of the relationships between input and output layers

across the convolutional layer with stride = 2. Pixels a, b, c, d denotes 4 typical
types of pixels in the input map, Pixels E, F, G, H denotes adjacent pixels in the
output map. The green, red, purple, cyan shadows in the input map are the
perception fields of the pixels E,F,G,H. From the coverage we find there are (a
vs. E,), (b vs. E, F), (c vs. E, G), (d vs. E, F, G, H) 4 types of interlayer pixel
relationships.

P. Xian et al.

Expert Systems With Applications 193 (2022) 116438

9

Fig. 6. The semantic segmentation visualization results on Cityscapes validation set compared with DeepLab v3. Column (a) is the original input images, column (b)
is the semantic segmentation results predicted by DeepLab v3, column (c) is the semantic segmentation result predicted by our proposed Pixel Voting Decoder,
column (d) is the semantic segmentation ground truth. Note that the black area in (d) refers to undefined labels.

P. Xian et al.

Expert Systems With Applications 193 (2022) 116438

10

4.2. Validation on semantic segmentation

In order to verify the effectiveness of our proposed Pixel Voting
Decoder, we adjust it into two tasks, namely semantic segmentation and
instance segmentation. For semantic segmentation, we directly replace
the feature pyramid decoder with our Pixel Voting Decoder. At the top of
the ResNet backbone, for classification purpose, a 1× 1 convolutional
layer is employed to predict the class logits for the few pixels in the
smallest-size feature map. From this classification layer, we obtain a
tensor of shape Cobj × Htop ×Wtop from the backbone of ResNet, where
Cobj is equal to the number of semantic segmentation categories, and Htop

and Wtop represent the height and width of the feature map at the top
encoder layer. Then, these top layer classification logits are regarded as
the initial input feature map C, which is regarded as the yL fed in
Equation (4), finally, we obtain the decoded large mask with a shape of
Cobj× Himg × Wimg, where Himg and Wimg refer to the height and width
size of the original input image. Note that in our implementation, Pixel
Voting Decoder only decodes the masks into 14Himg ×

1
4Wimg to reduce the

huge computations for large feature maps. Eventually, 1
4Himg ×

1
4Wimg

masks are unsampled into Himg ×Wimg by the bilinear interpolation.
We compared our Pixel Voting Decoder with the mainstream se-

mantic segmentation methods (such as DeepLab, PSPNet, SegModel,
etc.) on the Cityscapes validation dataset. We adapt the Pixel Voting
Decoder to a typical encoder-decoder architecture. The performances of
these networks are listed in Table 1. Note that the listed networks are
trained using the ResNet-50 backbone with single scale inputs. As shown
in the table, architecture with Pixel Voting Decoder achieves 79.3 on
mIoU without the help of coarse annotations, which is better than most
of the mainstream semantic segmentation methods. For a better com-
parison, we refer to the ground truth in Fig. 6 and visualize the semantic

segmentation prediction results of our method and the most popular
approach DeepLab v3. It is not difficult to find that the edges segmented
by ours are sharper and the poles are connected properly. Note that the
images of the DeepLab v3 are cropped from the original paper. The re-
sults show that our approach has a better detail segmentation
performance.

4.3. Validation on instance segmentation

For the instance segmentation, we modified the mask head of Mask
R-CNN (He, 2017) using the proposed Pixel Voting Decoder. The clas-
sification logits from the class head are employed as the primary mask
for each object proposal. The pixel association degrees come from the
backbone of ResNet, as shown in Fig. 3 (a). Considering that the number
of the residual blocks is different due to the different source levels of the
object proposals, we use the basic blocks of the decoder part of the Pixel
Voting Decoders to process proposals from the encoder feature levels. By
simulating dynamic deconvolution, we can obtain the cropped area of
each object in all feature levels. Through similar operations in the se-
mantic segmentation decoder, we finally obtain a large decoded mark
with a shape Cobj×Himg ×Wimg, where Cobj refers to the number of object
proposals from the Region Proposal Network (Konig, 2017) of Mask R-
CNN.

In this section, we compare the Pixel Voting Decoder with the well-
known instance segmentation method Mask R-CNN to prove its effec-
tiveness. In order to control the effect of the Feature Pyramid Network
(FPN), we employ ResNet-50-C4 as the backbone. We modify it by
incorporating our Pixel Voting Decoder into Mask R-CNN, and the
detailed architecture modification is described in Section 3.6. The

Table 2
Instance segmentation performance comparison on COCO dataset with the
mainstream Mask R-CNN.

Method Backbone AP AP50 AP75

Mask R-CNN Res-50-C4 30.3 51.2 31.5
Mask R-CNN Res-50-FPN 33.6 55.2 35.3
Ours Res-50-C4 33.9 56.1 36.2
PANet (Wang et al., 2020) ResNeXt-101 42.0 62.3 46.4
SOLO (Xie et al., 2020:) Res-DCN-101-FCN 40.4 62.4 43.7
MSRCNN (Huang et al., 2019:) Res-DCN-101-FCN 38.3 58.8 41.5
Ours ResNet-50-C4 33.9 56.1 36.2
PolarMask (Zagoruyko et al., 1604) ResNet-101-FPN 32.1 53.7 33.1
YOLACT (Bolya et al., 2019:) ResNet-101-FPN 29.8 48.5 31.2
MultiPath (Paszke, 2019) ResNet-101 25.0 45.4 24.5

Fig. 7. The instance segmentation visualization results on COCO validation set. We mark the segmented objects with their contours. Texts in white indicate the
predicted label for each object, the following figures indicate the confidence for each object.

Table 3
The time consumption comparison of two implementations of the dynamic
deconvolution, the step update version and matrix computation version on
different strides and different input feature map sizes. The smaller is better.

Input map size (px) Step update cost time
(ms)

Matrix computation cost time
(ms)

stride = 1 stride = 2 stride = 1 stride = 2

1024*1024 42,925 43,030 3.781 17.07
512*512 10,657 10,705 1.161 4.54
256*256 2,653 2,680 0.688 1.28
128*128 667.2 667.6 0.593 0.597
64*64 167.2 167.1 0.445 0.597
32*32 42.5 43.5 0.437 0.494
16*16 11.02 11.3 0.431 0.484
8*8 2.801 2.84 0.427 0.484

P. Xian et al.

Expert Systems With Applications 193 (2022) 116438

11

Instance segmentation performance is listed in Table 2. The results show
that our Pixel Voting Decoder obtains higher metric scores than the
vanilla ResNet-50-C4 backbone and FPN version, which shows that our
Pixel Voting Decoder outperforms FPN. In order to intuitively demon-
strate the performance of our Pixel Voting Decoder, some visualization
results of instance segmentation are shown in Fig. 7. It is worth noting
that the performance of the proposed Pixel Voting Decoder is conducted
on a single GPU employing the ResNet-50 as the backbone. With limited
computing resources, the proposed method achieves 33.9 on AP, which
is better than the original Mask RCNN and the FPN variant, even better
than some methods employing ResNet-101. Even though the more
recent works (Wang et al., 2020; Xie et al., 2020:) set the pace on the
metrics, the proposed method still achieves remarkable performance
with fewer convolutional layers, which means less computation and less
memory consumption.

4.4. Ablation Study: the efficiency of the matrix computation

As discussed in Section 3.4 and 3.5, the original dynamic deconvo-
lution operation requires step-by-step updating of the deconvolution
kernel weights during the kernel sweeping process. The proposed matrix
computations can improve the calculation speed of the dynamic
deconvolution. In this section, verify the efficiency of the matrix
designed for dynamic deconvolution, and we demonstrate that the
computational cost of the proposed dynamic deconvolution is affordable
when compared with the typical convolution and deconvolution

operations.
To compare the two implementations of the dynamic deconvolution,

we conducted a series of experiments on various input feature map
scales for different strides. The results show that no matter how the
stride is set, the matrix implementation is much better than the original
step update implementation by a large margin no matter how the stride
is set. Besides, for both cases of stride 1 and stride 2, the matrix version
demonstrates its supreme performances. Table 3 lists the detailed
computation time of dynamic deconvolution using these two imple-
mentations. For an input feature map with a size of 1024*1024, the step
update version costs over 40 s while the matrix computation version
only uses 3.781 ms, the matrix version is over 11352x faster than the
step update version. Fig. 8 provides a more intuitive perspective for
comparing these two implementations on a log scale, the matrix version
is 3 or 4 orders of magnitude faster on all scales of the input feature
maps.

During the sweeping process, using different kernel weight settings
at each stop will cost more computing resources, but compared with
typical convolution and deconvolution operations, this is affordable. We
compare the proposed dynamic deconvolution with the official PyTorch
implementations of the convolution and deconvolution, the Conv2d and
the ConvTransposed2d. The time consumption and the GPU memory
cost results are listed in Table 4. We only analyze the matrix imple-
mentation of the dynamic deconvolution with the convolution and the
deconvolution, because only this version is employed for the previous
experiments. These methods are tested on a large 1024x1024 input
feature map, the results show that the proposed dynamic deconvolution
is a little slower than the typical operations, but the cost of stride 1 and
stride 2 are only 4 ms and 17 ms, respectively. This is affordable for
network training and inference. Note that the official convolution and
deconvolution cannot update the kernel weights when sweeping the
feature map. As for the GPU memory cost, the dynamic deconvolution
consumes 987 MB for stride 1 and 1467 MB for stride 2, which is almost
the same resources as the typical operations.

It is worth noting that the matrix computation of the dynamic
deconvolution is implemented based on the tensor operation in python,
there is still space for improving the computation speed, for example,
using C++. Note that the input and output channel numbers of the
above operations are set to 19. The cases of deconvolution when stride
equals 2 cost more memories because their outputs are much larger,
actually the size is 2048 × 2048.

Fig. 8. The comparison of two implementations of the dynamic deconvolution at all sizes of the input feature maps in log scale. The matrix version is much faster
than the step update version.

Table 4
The comparison between the dynamic deconvolution with the typical convolu-
tion and deconvolution upon the time consuming and the GPU memory cost
when input map sizes = 1024*1024. The smaller is better.

Input map size Time cost (ms) GPU memory (MB)

stride =
1

stride =
2

stride =
1

stride =
2

PyTorch Conv2d 0.241 0.156 941 849
PyTorch ConvTransposed2d 0.292 0.534 941 1397
Dynamic deconvolution by step

update
42,925 43,030 1011 1519

Dynamic deconvolution by
matrix

3.781 17.07 987 1467

P. Xian et al.

Expert Systems With Applications 193 (2022) 116438

12

5. Conclusion

In this paper, we proposed the Pixel Voting Decoder, which is a novel
universal decoder for both semantic segmentation and instance seg-
mentation tasks. This network regresses the interlayer pixel voting re-
lationships across the convolutional layers, then utilizes the
relationships to accurately deliver higher-level information down to the
lower level and fuse the features to generate segmentation masks. We
propose the dynamic deconvolution to adapt the deconvolution for pixel
voting and design the effective matrix computation to boost the calcu-
lation. Compared with popular methods like Mask R-CNN and DeepLab,
the proposed Pixel Voting Decoder showed its superiority in both flex-
ibility and precision. The ability to decode the instance segmentation
masks shows its flexibility, while the competitive performance for both
tasks shows its precision. It can achieve better performance when
dealing with the instance segmentation task on the COCO dataset and
the semantic segmentation task on the Cityscapes datasets. The matrix
version of the dynamic deconvolution also ensures the high efficiency of
the proposed network. In the future, with more efficient implementation
for the dynamic deconvolution, the network would run faster. Further-
more, the Pixel Voting Decoder will help to build a universal network
targeting different segmentation tasks.

CRediT authorship contribution statement

Pengfei Xian: Conceptualization, Methodology, Software, Writing –
original draft. Lai-Man Po: Supervision, Formal analysis, Writing – re-
view & editing. Jingjing Xiong: Validation, Software, Writing – review
& editing. Chang Zhou: Formal analysis, Writing – review & editing.
Yuzhi Zhao: Resources, Writing – review & editing. Wing-Yin Yu:
Writing – review & editing. Weifeng Ou: Writing – review & editing.
Yujia Zhang: Data curation. Xiaori Zhang: Visualization, Writing –
review & editing.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

References

Badrinarayanan, V., Kendall, A., & Cipolla, R. (2017). Segnet: A deep convolutional
encoder-decoder architecture for image segmentation. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 39(12), 2481–2495.

Bolya, D., Zhou, C., Xiao, F., et al. (2019). Yolact: Real-time instance segmentation. In
Proceedings of the IEEE/CVF International Conference on Computer Vision (pp.
9157–9166).

L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, Semantic image
segmentation with deep convolutional nets and fully connected crfs, arXiv preprint
arXiv:1412.7062, 2014.

Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., & Yuille, A. L. (2017). Deeplab:
Semantic image segmentation with deep convolutional nets, atrous convolution, and
fully connected crfs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40
(4), 834–848.

Chen, Liang-Chieh, et al., Semantic image segmentation with deep convolutional nets
and fully connected crfs. arXiv preprint arXiv:1412.7062 (2014).

Chen, Liang-Chieh, et al. Rethinking atrous convolution for semantic image
segmentation. arXiv preprint arXiv:1706.05587 (2017).

Chen, Liang-Chieh, et al. Deeplab: Semantic image segmentation with deep
convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions
on pattern analysis and machine intelligence 40.4 (2017): 834-848.

Cheng, B., Collins, M. D., Zhu, Y., et al. (2020). Panoptic-deeplab: A simple, strong, and
fast baseline for bottom-up panoptic segmentation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (pp. 12475–12485).

Cordts, M., et al. (2016). The cityscapes dataset for semantic urban scene understanding.
Proceedings of the IEEE conference on computer vision and pattern recognition.

Dai, J., et al. (2017). Deformable convolutional networks. In 2017 IEEE International
Conference on Computer Vision (ICCV) (pp. 764–773).

Dumoulin, Vincent, and Francesco Visin. A guide to convolution arithmetic for deep
learning. arXiv preprint arXiv:1603.07285 (2016).

Hafiz, A. M., & Bhat, G. M. (2020). A survey on instance segmentation: State of the art.
International Journal of Multimedia Information Retrieval, 1–19.

He, K., et al. (2016). Deep residual learning for image recognition. Proceedings of the IEEE
conference on computer vision and pattern recognition.

He, K., et al. (2017). Mask r-cnn. Proceedings of the IEEE international conference on
computer vision.

A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto,
and H. Adam, Mobilenets: Efficient convolutional neural networks for mobile vision
applications, arXiv preprint arXiv:1704.04861, 2017.

Huang, Z., Huang, L., Gong, Y., et al. (2019). Mask scoring r-cnn. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 6409–6418).

Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely connected
convolutional networks. In Proceedings of the IEEE conference on computer vision and
pattern recognition (pp. 4700–4708).

Kirillov, A., He, K., Girshick, R., et al. (2019). Panoptic segmentation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 9404–9413).

Konig, D., et al. (2017). Fully convolutional region proposal networks for multispectral
person detection. Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition Workshops.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing systems
(pp. 1097–1105).

Lateef, F. H., & Ruichek, Y. (2019). Survey on semantic segmentation using deep learning
techniques. Neurocomputing, 338, 321–348.

Lin, T.-Y., et al. (2014). Microsoft coco: Common objects in context. European conference
on computer vision. Cham: Springer.

Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional networks for semantic
segmentation. In Proceedings of the IEEE conference on computer vision and pattern
recognition (pp. 3431–3440).

Mohammadi, S., Zuckerman, N., Goldsmith, A., et al. (2016). A critical survey of
deconvolution methods for separating cell types in complex tissues. Proceedings of the
IEEE, 105(2), 340–366.

Noh, H., Hong, S., & Han, B. (2015). Learning deconvolution network for semantic
segmentation. In Proceedings of the IEEE international conference on computer vision
(pp. 1520–1528).

Noh, H., Hong, S., & Han, B. (2015). Learning deconvolution network for semantic
segmentation. Proceedings of the IEEE international conference on computer vision.

Paszke, Adam, et al. Pytorch: An imperative style, high-performance deep learning
library. arXiv preprint arXiv:1912.01703 (2019).

Peng, S., et al. (2019). Pvnet: Pixel-wise voting network for 6dof pose estimation.
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.

O. Ronneberger, P. Fischer, and T. Brox, U-net: Convolutional networks for biomedical
image segmentation. In; International Conference on Medical image computing and
computer-assisted intervention. Springer, 2015, pp. 234–241.

Shen, F., et al. (2017). Semantic segmentation via structured patch prediction, context crf
and guidance crf. Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition.

Simonyan, Karen, and Andrew Zisserman. Very deep convolutional networks for large-
scale image recognition. arXiv preprint arXiv:1409.1556 (2014).

Škrabánek, P. (2016). Refined Max-Pooling and Unpooling Layers for Deep
Convolutional Neural Networks Mendel 2016. 22nd International Conference on Soft
Computing. Vysoké učení technické v Brně.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., et al. (2015). Going
deeper with convolutions. In Proceedings of the IEEE conference on computer vision and
pattern recognition (pp. 1–9).

Wang, X., Kong, T., Shen, C., et al. (2020). Solo: Segmenting objects by locations European
Conference on Computer Vision (pp. 649–665). Cham: Springer.

Xie, E., Sun, P., Song, X., et al. (2020). Polarmask: Single shot instance segmentation with
polar representation. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition (pp. 12193–12202).

Xiong, Y., Liao, R., Zhao, H., et al. (2019). Upsnet: A unified panoptic segmentation
network. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (pp. 8818–8826).

Zagoruyko S, Lerer A, Lin T Y, et al. A multipath network for object detection. arXiv
preprint arXiv:1604.02135, 2016.

Zeiler, M. D., et al. (2010). Deconvolutional networks. 2010 IEEE Computer Society
Conference on computer vision and pattern recognition.

Zeiler, M. D., Taylor, G. W., & Fergus, R. (2011). Adaptive deconvolutional networks for
mid and high level feature learning. 2011 International Conference on Computer
Vision.

Zhao, H., et al. (2017). Pyramid scene parsing network. Proceedings of the IEEE conference
on computer vision and pattern recognition.

P. Xian et al.

http://refhub.elsevier.com/S0957-4174(21)01725-5/h0005
http://refhub.elsevier.com/S0957-4174(21)01725-5/h0005
http://refhub.elsevier.com/S0957-4174(21)01725-5/h0005
http://refhub.elsevier.com/S0957-4174(21)01725-5/h0010
http://refhub.elsevier.com/S0957-4174(21)01725-5/h0010
http://refhub.elsevier.com/S0957-4174(21)01725-5/h0010
http://refhub.elsevier.com/S0957-4174(21)01725-5/h0020
http://refhub.elsevier.com/S0957-4174(21)01725-5/h0020
http://refhub.elsevier.com/S0957-4174(21)01725-5/h0020
http://refhub.elsevier.com/S0957-4174(21)01725-5/h0020
http://refhub.elsevier.com/S0957-4174(21)01725-5/h0040
http://refhub.elsevier.com/S0957-4174(21)01725-5/h0040
http://refhub.elsevier.com/S0957-4174(21)01725-5/h0040
http://refhub.elsevier.com/S0957-4174(21)01725-5/h0045
http://refhub.elsevier.com/S0957-4174(21)01725-5/h0045
http://refhub.elsevier.com/S0957-4174(21)01725-5/h0050
http://refhub.elsevier.com/S0957-4174(21)01725-5/h0050
http://refhub.elsevier.com/S0957-4174(21)01725-5/h0060
http://refhub.elsevier.com/S0957-4174(21)01725-5/h0060
http://refhub.elsevier.com/S0957-4174(21)01725-5/h0065
http://refhub.elsevier.com/S0957-4174(21)01725-5/h0065
http://refhub.elsevier.com/S0957-4174(21)01725-5/h0070
http://refhub.elsevier.com/S0957-4174(21)01725-5/h0070
http://refhub.elsevier.com/S0957-4174(21)01725-5/h0085
http://refhub.elsevier.com/S0957-4174(21)01725-5/h0085
http://refhub.elsevier.com/S0957-4174(21)01725-5/h0090
http://refhub.elsevier.com/S0957-4174(21)01725-5/h0090
http://refhub.elsevier.com/S0957-4174(21)01725-5/h0090
http://refhub.elsevier.com/S0957-4174(21)01725-5/h0100
http://refhub.elsevier.com/S0957-4174(21)01725-5/h0100
http://refhub.elsevier.com/S0957-4174(21)01725-5/h0105
http://refhub.elsevier.com/S0957-4174(21)01725-5/h0105
http://refhub.elsevier.com/S0957-4174(21)01725-5/h0105
http://refhub.elsevier.com/S0957-4174(21)01725-5/h0110
http://refhub.elsevier.com/S0957-4174(21)01725-5/h0110
http://refhub.elsevier.com/S0957-4174(21)01725-5/h0110
http://refhub.elsevier.com/S0957-4174(21)01725-5/h0115
http://refhub.elsevier.com/S0957-4174(21)01725-5/h0115
http://refhub.elsevier.com/S0957-4174(21)01725-5/h0120
http://refhub.elsevier.com/S0957-4174(21)01725-5/h0120
http://refhub.elsevier.com/S0957-4174(21)01725-5/h0135
http://refhub.elsevier.com/S0957-4174(21)01725-5/h0135
http://refhub.elsevier.com/S0957-4174(21)01725-5/h0135
http://refhub.elsevier.com/S0957-4174(21)01725-5/h0140
http://refhub.elsevier.com/S0957-4174(21)01725-5/h0140
http://refhub.elsevier.com/S0957-4174(21)01725-5/h0140
http://refhub.elsevier.com/S0957-4174(21)01725-5/h0145
http://refhub.elsevier.com/S0957-4174(21)01725-5/h0145
http://refhub.elsevier.com/S0957-4174(21)01725-5/h0145
http://refhub.elsevier.com/S0957-4174(21)01725-5/h0150
http://refhub.elsevier.com/S0957-4174(21)01725-5/h0150
http://refhub.elsevier.com/S0957-4174(21)01725-5/h0160
http://refhub.elsevier.com/S0957-4174(21)01725-5/h0160
http://refhub.elsevier.com/S0957-4174(21)01725-5/h0175
http://refhub.elsevier.com/S0957-4174(21)01725-5/h0175
http://refhub.elsevier.com/S0957-4174(21)01725-5/h0175
http://refhub.elsevier.com/S0957-4174(21)01725-5/h0195
http://refhub.elsevier.com/S0957-4174(21)01725-5/h0195
http://refhub.elsevier.com/S0957-4174(21)01725-5/h0195
http://refhub.elsevier.com/S0957-4174(21)01725-5/h0200
http://refhub.elsevier.com/S0957-4174(21)01725-5/h0200
http://refhub.elsevier.com/S0957-4174(21)01725-5/h0200
http://refhub.elsevier.com/S0957-4174(21)01725-5/h0215
http://refhub.elsevier.com/S0957-4174(21)01725-5/h0215
http://refhub.elsevier.com/S0957-4174(21)01725-5/h0225
http://refhub.elsevier.com/S0957-4174(21)01725-5/h0225
http://refhub.elsevier.com/S0957-4174(21)01725-5/h0225
http://refhub.elsevier.com/S0957-4174(21)01725-5/h0230
http://refhub.elsevier.com/S0957-4174(21)01725-5/h0230
http://refhub.elsevier.com/S0957-4174(21)01725-5/h0230
http://refhub.elsevier.com/S0957-4174(21)01725-5/h0240
http://refhub.elsevier.com/S0957-4174(21)01725-5/h0240
http://refhub.elsevier.com/S0957-4174(21)01725-5/h0245
http://refhub.elsevier.com/S0957-4174(21)01725-5/h0245
http://refhub.elsevier.com/S0957-4174(21)01725-5/h0245
http://refhub.elsevier.com/S0957-4174(21)01725-5/h0255
http://refhub.elsevier.com/S0957-4174(21)01725-5/h0255

Expert Systems With Applications 193 (2022) 116438

13

Pengfei Xian (S’21) received the B.Eng. degree in electrical
engineering from Harbin Institute of Technology, Harbin,
China, in 2017. He is currently pursuing the Ph.D. degree in
electrical engineering at City University of Hong Kong. His
research interest includes instance and semantic segmentation
on images and videos, deep learning and computer vision.

Lai-Man Po (M’92–SM’09) received the B.S. and Ph.D. degrees
in electronic engineering from the City University of Hong
Kong, Hong Kong, in 1988 and 1991, respectively. He has been
with the Department of Electronic Engineering, City University
of Hong Kong, since 1991, where he is currently an Associate
Professor of Department of Electrical Engineering. He has
authored over 150 technical journal and conference papers. His
research interests include image and video coding with an
emphasis deep learning based computer vision algorithms.

Dr. Po is a member of the Technical Committee on Multi-
media Systems and Applications and the IEEE Circuits and
Systems Society. He was the Chairman of the IEEE Signal Pro-
cessing Hong Kong Chapter in 2012 and 2013. He was an

Associate Editor of HKIE Transactions in 2011 to 2013. He also served on the Organizing
Committee, of the IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing in 2003, and the IEEE International Conference on Image Processing in 2010.

Jingjing Xiong received the B.S. degree in Mechanical Design,
Manufacturing and Automation from the Xiangtan University,
Hunan, China, in 2015, and the M.S. degree in Artificial Intel-
ligence and Pattern Recognition from Shenyang Institute of
Automation, Chinese Academy of Sciences, Liaoning, China, in
2018. She is currently pursuing the Ph.D. degree in electrical
engineering at City University of Hong Kong, HKSAR, China.
Her research interests are in image segmentation, deep learning
and computer vision.

Chang Zhou received the BSC degree from the DongHua Uni-
versity of China, Shanghai, in 2016, the Master degree from
City University of Hong Kong, Hong Kong, in 2017. He is
currently working toward the PhD degree in the Department of
Electrical Engineering, City University of Hong Kong. His
research interests are in computer vision and deep learning.

Yuzhi Zhao (S’19) received the B.Eng. Degree in electronic in-
formation from Huazhong University of Science and Technol-
ogy, Wuhan, China, in 2018. He is currently pursuing the Ph.D.
degree with the Department of Electrical Engineering, City
University of Hong Kong. His research interests include image
processing, low-level vision and generative model.

Wing-Yin Yu received the B.Eng. degree in Information Engi-
neering from City University of Hong Kong, in 2019. He is
currently pursuing the Ph.D. degree at Department of Electrical
Engineering at City University of Hong Kong. His research in-
terests are generative adversarial networks, image generation
and semantic segmentation.

Wei-Feng Ou received his B.Eng. degree from Guangdong
University of Technology in 2013, his M.Eng. degree from
South China University of Technology in 2016. He was an en-
gineer in Huawei from 2016 to 2018. He is currently pursuing
his Ph.D. degree in City University of Hong Kong. His research
interests include deep learning and computer vision.

Yujia Zhang received the B.E. degree in electrical engineering
and automation from Huazhong University of Science and
Technology in 2015, and the M.S. degree in electrical engi-
neering from South China University of Technology, China, in
2018. He is currently pursuing a Ph. D. degree at City University
of Hong Kong. His current research interests include computer
vision, video understanding.

Xiaori Zhang received the B.S. degree in Financial Manage-
ment from Harbin Institute of Technology, China, in 2017. She
is currently pursuing the Ph.D. degree at School of Management
at Fudan University, China. Her research interests are firm
innovation, institutional trading, international market perfor-
mance and deep learning.

P. Xian et al.

	Pixel Voting Decoder: A novel decoder that regresses pixel relationships for segmentation
	1 Introduction
	2 Related works
	2.1 The encoder – Decoder architecture
	2.2 Instance segmentation and semantic segmentation
	2.3 Deconvolutions

	3 Pixel Voting Decoder
	3.1 Problem formulation
	3.2 The pixel association regression
	3.3 The dynamic deconvolution
	3.4 Acceleration: The matrix solution for the dynamic deconvolution
	3.5 The matrix calculations for stride of 2

	4 Experiments
	4.1 Experimental settings
	4.2 Validation on semantic segmentation
	4.3 Validation on instance segmentation
	4.4 Ablation Study: the efficiency of the matrix computation

	5 Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	References

